Mostrar el registro sencillo del ítem

dc.contributor.author
Jurado Egas, Mauro Fabricio  
dc.contributor.author
Samper, Mauricio Eduardo  
dc.contributor.author
Rosés, Rodolfo Edgar  
dc.date.available
2023-12-13T15:59:44Z  
dc.date.issued
2023-04  
dc.identifier.citation
Jurado Egas, Mauro Fabricio; Samper, Mauricio Eduardo; Rosés, Rodolfo Edgar; An improved encoder-decoder-based CNN model for probabilistic short-term load and PV forecasting; Elsevier Science SA; Electric Power Systems Research; 217; 4-2023; 1-12  
dc.identifier.issn
0378-7796  
dc.identifier.uri
http://hdl.handle.net/11336/220177  
dc.description.abstract
Integrating distributed energy resources (DER) such as distributed generation, demand response, and plug-in electric vehicles is one of the major causes of fluctuating and unpredictable operating states in electric distribution systems. Therefore, distribution utilities must carry out anticipated operational planning to achieve appropriate and efficient network management. Then, it is necessary to obtain more accurate load forecasts on higher granularity levels than those commonly supervised by the SCADA system, for instance, at distribution transformers. Furthermore, as medium/low voltage profiles are more volatile and uncertain than high voltage profiles and, therefore, more difficult to predict, there is an opportunity to improve their performance at this level. This work proposes a short-term net load forecast model that considers load consumption and PV distributed generation behind the meter. This model is based on an efficient deep learning network that uses novel techniques and architectures implemented in other tasks adapted to the net electric load forecasting problem at an individual and/or low-aggregated level. At the same time, the model can consider information provided by exogenous variables of time and meteorological ones to improve the forecast accuracy. Additionally, the proposed model is extended to a probabilistic approach through Monte Carlo Dropout and kernel density estimation to obtain probability density forecasts. To evaluate the model performance, a dataset from the “Caucete Smart Grid” located in Argentina is used. The results show the effectiveness and superiority of the proposed model through several cases and comparisons with the state-of-the-art models considered.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science SA  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEEP LEARNING  
dc.subject
DEEP RESIDUAL NETWORK  
dc.subject
PROBABILISTIC FORECAST  
dc.subject
SHORT-TERM NET LOAD FORECASTING  
dc.subject
SMART GRID  
dc.subject
TIME SERIES  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
An improved encoder-decoder-based CNN model for probabilistic short-term load and PV forecasting  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-12T13:12:03Z  
dc.journal.volume
217  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Jurado Egas, Mauro Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina  
dc.description.fil
Fil: Samper, Mauricio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina  
dc.description.fil
Fil: Rosés, Rodolfo Edgar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina  
dc.journal.title
Electric Power Systems Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378779623000421  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.epsr.2023.109153