Mostrar el registro sencillo del ítem
dc.contributor.author
Jurado Egas, Mauro Fabricio
dc.contributor.author
Samper, Mauricio Eduardo
dc.contributor.author
Rosés, Rodolfo Edgar
dc.date.available
2023-12-13T15:59:44Z
dc.date.issued
2023-04
dc.identifier.citation
Jurado Egas, Mauro Fabricio; Samper, Mauricio Eduardo; Rosés, Rodolfo Edgar; An improved encoder-decoder-based CNN model for probabilistic short-term load and PV forecasting; Elsevier Science SA; Electric Power Systems Research; 217; 4-2023; 1-12
dc.identifier.issn
0378-7796
dc.identifier.uri
http://hdl.handle.net/11336/220177
dc.description.abstract
Integrating distributed energy resources (DER) such as distributed generation, demand response, and plug-in electric vehicles is one of the major causes of fluctuating and unpredictable operating states in electric distribution systems. Therefore, distribution utilities must carry out anticipated operational planning to achieve appropriate and efficient network management. Then, it is necessary to obtain more accurate load forecasts on higher granularity levels than those commonly supervised by the SCADA system, for instance, at distribution transformers. Furthermore, as medium/low voltage profiles are more volatile and uncertain than high voltage profiles and, therefore, more difficult to predict, there is an opportunity to improve their performance at this level. This work proposes a short-term net load forecast model that considers load consumption and PV distributed generation behind the meter. This model is based on an efficient deep learning network that uses novel techniques and architectures implemented in other tasks adapted to the net electric load forecasting problem at an individual and/or low-aggregated level. At the same time, the model can consider information provided by exogenous variables of time and meteorological ones to improve the forecast accuracy. Additionally, the proposed model is extended to a probabilistic approach through Monte Carlo Dropout and kernel density estimation to obtain probability density forecasts. To evaluate the model performance, a dataset from the “Caucete Smart Grid” located in Argentina is used. The results show the effectiveness and superiority of the proposed model through several cases and comparisons with the state-of-the-art models considered.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science SA
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEEP LEARNING
dc.subject
DEEP RESIDUAL NETWORK
dc.subject
PROBABILISTIC FORECAST
dc.subject
SHORT-TERM NET LOAD FORECASTING
dc.subject
SMART GRID
dc.subject
TIME SERIES
dc.subject.classification
Ingeniería Eléctrica y Electrónica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
An improved encoder-decoder-based CNN model for probabilistic short-term load and PV forecasting
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-12-12T13:12:03Z
dc.journal.volume
217
dc.journal.pagination
1-12
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Jurado Egas, Mauro Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
dc.description.fil
Fil: Samper, Mauricio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
dc.description.fil
Fil: Rosés, Rodolfo Edgar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
dc.journal.title
Electric Power Systems Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378779623000421
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.epsr.2023.109153
Archivos asociados