Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An improved encoder-decoder-based CNN model for probabilistic short-term load and PV forecasting

Jurado Egas, Mauro FabricioIcon ; Samper, Mauricio EduardoIcon ; Rosés, Rodolfo Edgar
Fecha de publicación: 04/2023
Editorial: Elsevier Science SA
Revista: Electric Power Systems Research
ISSN: 0378-7796
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

Integrating distributed energy resources (DER) such as distributed generation, demand response, and plug-in electric vehicles is one of the major causes of fluctuating and unpredictable operating states in electric distribution systems. Therefore, distribution utilities must carry out anticipated operational planning to achieve appropriate and efficient network management. Then, it is necessary to obtain more accurate load forecasts on higher granularity levels than those commonly supervised by the SCADA system, for instance, at distribution transformers. Furthermore, as medium/low voltage profiles are more volatile and uncertain than high voltage profiles and, therefore, more difficult to predict, there is an opportunity to improve their performance at this level. This work proposes a short-term net load forecast model that considers load consumption and PV distributed generation behind the meter. This model is based on an efficient deep learning network that uses novel techniques and architectures implemented in other tasks adapted to the net electric load forecasting problem at an individual and/or low-aggregated level. At the same time, the model can consider information provided by exogenous variables of time and meteorological ones to improve the forecast accuracy. Additionally, the proposed model is extended to a probabilistic approach through Monte Carlo Dropout and kernel density estimation to obtain probability density forecasts. To evaluate the model performance, a dataset from the “Caucete Smart Grid” located in Argentina is used. The results show the effectiveness and superiority of the proposed model through several cases and comparisons with the state-of-the-art models considered.
Palabras clave: DEEP LEARNING , DEEP RESIDUAL NETWORK , PROBABILISTIC FORECAST , SHORT-TERM NET LOAD FORECASTING , SMART GRID , TIME SERIES
Ver el registro completo
 
Archivos asociados
Tamaño: 3.875Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/220177
URL: https://www.sciencedirect.com/science/article/pii/S0378779623000421
DOI: http://dx.doi.org/10.1016/j.epsr.2023.109153
Colecciones
Articulos(IEE)
Articulos de INSTITUTO DE ENERGIA ELECTRICA
Citación
Jurado Egas, Mauro Fabricio; Samper, Mauricio Eduardo; Rosés, Rodolfo Edgar; An improved encoder-decoder-based CNN model for probabilistic short-term load and PV forecasting; Elsevier Science SA; Electric Power Systems Research; 217; 4-2023; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES