Mostrar el registro sencillo del ítem

dc.contributor.author
Duchowicz, Pablo Román  
dc.contributor.author
Fioressi, Silvina Ethel  
dc.contributor.author
Bacelo, Daniel Enrique  
dc.contributor.author
Quispe, Alexander Q.  
dc.contributor.author
Yapu, Ebbe L.  
dc.contributor.author
Castañeta, Heriberto  
dc.date.available
2023-12-12T12:14:27Z  
dc.date.issued
2023-12  
dc.identifier.citation
Duchowicz, Pablo Román; Fioressi, Silvina Ethel; Bacelo, Daniel Enrique; Quispe, Alexander Q.; Yapu, Ebbe L.; et al.; QSPR predicting the vapor pressure of pesticides into high/low volatility classes; Springer; Environmental Science and Pollution Research; 12-2023; 1-8  
dc.identifier.issn
1614-7499  
dc.identifier.uri
http://hdl.handle.net/11336/219930  
dc.description.abstract
In this work, the vapor pressure of pesticides is employed as an indicator of their volatility potential. Quantitative Structure-Property Relationship models are established to predict the classification of compounds according to their volatility, into the high and low binary classes separated by the 1-mPa limit. A large dataset of 1005 structurally diverse pesticides with known experimental vapor pressure data at 20 °C is compiled from the publicly available Pesticide Properties DataBase (PPDB) and used for model development. The freely available PaDEL-Descriptor and ISIDA/Fragmentor molecular descriptor programs provide a large number of 19,947 non-conformational molecular descriptors that are analyzed through multivariable linear regressions and the Replacement Method technique. Through the selection of appropriate molecular descriptors of the substructure fragment type and the use of different standard classification metrics of model’s quality, the classification of the structure-property relationship achieves acceptable results for discerning between the high and low volatility classes. Finally, an application of the obtained QSPR model is performed to predict the classes for 504 pesticides not having experimentally measured vapor pressures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
VAPOR PRESSURE  
dc.subject
PESTICIDES  
dc.subject
PPDB DATABASE  
dc.subject
QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIPS  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
QSPR predicting the vapor pressure of pesticides into high/low volatility classes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-11T16:12:06Z  
dc.journal.pagination
1-8  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Fioressi, Silvina Ethel. Universidad de Belgrano. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Bacelo, Daniel Enrique. Universidad de Belgrano. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Quispe, Alexander Q.. Universidad Mayor de San Andrés; Bolivia  
dc.description.fil
Fil: Yapu, Ebbe L.. Universidad Mayor de San Andrés; Bolivia  
dc.description.fil
Fil: Castañeta, Heriberto. Universidad Mayor de San Andrés; Bolivia  
dc.journal.title
Environmental Science and Pollution Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11356-023-31235-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11356-023-31235-8