Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

QSPR predicting the vapor pressure of pesticides into high/low volatility classes

Duchowicz, Pablo RománIcon ; Fioressi, Silvina EthelIcon ; Bacelo, Daniel EnriqueIcon ; Quispe, Alexander Q.; Yapu, Ebbe L.; Castañeta, Heriberto
Fecha de publicación: 12/2023
Editorial: Springer
Revista: Environmental Science and Pollution Research
ISSN: 1614-7499
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

In this work, the vapor pressure of pesticides is employed as an indicator of their volatility potential. Quantitative Structure-Property Relationship models are established to predict the classification of compounds according to their volatility, into the high and low binary classes separated by the 1-mPa limit. A large dataset of 1005 structurally diverse pesticides with known experimental vapor pressure data at 20 °C is compiled from the publicly available Pesticide Properties DataBase (PPDB) and used for model development. The freely available PaDEL-Descriptor and ISIDA/Fragmentor molecular descriptor programs provide a large number of 19,947 non-conformational molecular descriptors that are analyzed through multivariable linear regressions and the Replacement Method technique. Through the selection of appropriate molecular descriptors of the substructure fragment type and the use of different standard classification metrics of model’s quality, the classification of the structure-property relationship achieves acceptable results for discerning between the high and low volatility classes. Finally, an application of the obtained QSPR model is performed to predict the classes for 504 pesticides not having experimentally measured vapor pressures.
Palabras clave: VAPOR PRESSURE , PESTICIDES , PPDB DATABASE , QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIPS
Ver el registro completo
 
Archivos asociados
Tamaño: 574.2Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/219930
URL: https://link.springer.com/10.1007/s11356-023-31235-8
DOI: http://dx.doi.org/10.1007/s11356-023-31235-8
Colecciones
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Duchowicz, Pablo Román; Fioressi, Silvina Ethel; Bacelo, Daniel Enrique; Quispe, Alexander Q.; Yapu, Ebbe L.; et al.; QSPR predicting the vapor pressure of pesticides into high/low volatility classes; Springer; Environmental Science and Pollution Research; 12-2023; 1-8
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES