Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Investigation of zero-valent iron (ZVI)/H2O continuous processes using multivariate analysis and artificial neural networks

Berardozzi, ElianaIcon ; Donadelli, Jorge AndrésIcon ; Teixeira, Antonio C. S. C.; Guardani, Roberto; Garcia Einschlag, Fernando SebastianIcon
Fecha de publicación: 02/2023
Editorial: Elsevier Science SA
Revista: Chemical Engineering Journal
ISSN: 1385-8947
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Química

Resumen

Multivariate statistical techniques and artificial neural networks (ANNs) were used for the analysis, interpretation, and modeling of the results obtained in the study of zero-valent iron (ZVI) reactive beds designed for contaminant removal. A wide range of operating conditions was evaluated through more than 120 rapid small-scale column tests (RSSCT). The production of Fe(II) and Fe(III) species, dissolved oxygen consumption, and pH variation along the reactive bed were used as response variables for evaluating the process performance. Due to the complexity of the system, and the difficulty in defining and fitting kinetic parameters, ANN models were used to simulate the system without the need for kinetic expressions. Therefore the latter were used for assessing the system behavior within the investigated experimental domain and for evaluating the relative importance of the operating factors. In addition, the application of the multivariate techniques cluster analysis (CA) and principal component analysis (PCA) revealed underlying relationships among the response variables. Moreover, although multiple physicochemical processes are involved, the results obtained through PCA indicate that the main trends can be rationalized by considering a few key reactions only. The strategy of analyzing RSSCT results with different numerical techniques provides valuable knowledge for designing real-scale ZVI-based treatments aimed at the efficient elimination of a wide range of contaminants in the aqueous phase.
Palabras clave: ARTIFICIAL NEURAL NETWORKS , CONTINUOUS WATER TREATMENT , MULTIVARIATE ANALYSIS , RAPID SMALL-SCALE COLUMN TESTS , ZERO VALENT IRON
Ver el registro completo
 
Archivos asociados
Tamaño: 3.455Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/219798
URL: https://www.sciencedirect.com/science/article/abs/pii/S1385894722054109
DOI: http://dx.doi.org/10.1016/j.cej.2022.139930
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Berardozzi, Eliana; Donadelli, Jorge Andrés; Teixeira, Antonio C. S. C.; Guardani, Roberto; Garcia Einschlag, Fernando Sebastian; Investigation of zero-valent iron (ZVI)/H2O continuous processes using multivariate analysis and artificial neural networks; Elsevier Science SA; Chemical Engineering Journal; 453; 2-2023; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES