Mostrar el registro sencillo del ítem

dc.contributor.author
Chazarreta, Yésica Daniela  
dc.contributor.author
Carcedo, Ana Julia Paula  
dc.contributor.author
Alvarez Prado, Santiago  
dc.contributor.author
Massigoge, Ignacio  
dc.contributor.author
Amás, Juan Ignacio  
dc.contributor.author
Fernandez, Javier A.  
dc.contributor.author
Ciampitti, Ignacio Antonio  
dc.contributor.author
Otegui, Maria Elena  
dc.date.available
2023-12-07T14:55:32Z  
dc.date.issued
2023-05  
dc.identifier.citation
Chazarreta, Yésica Daniela; Carcedo, Ana Julia Paula; Alvarez Prado, Santiago; Massigoge, Ignacio; Amás, Juan Ignacio; et al.; Enhancing maize grain dry-down predictive models; Elsevier Science; Agricultural And Forest Meteorology; 334; 5-2023; 1-8  
dc.identifier.issn
0168-1923  
dc.identifier.uri
http://hdl.handle.net/11336/219668  
dc.description.abstract
Predicting the optimal harvest date after crop physiological maturity is highly relevant for maize (Zea mays L.). While harvesting before achieving the commercial kernel moisture implies additional costs of grain drying, a delayed harvest of maize crops is linked to grain yield and quality losses. The main objective of this work was to identify weather variables affecting the post-maturity grain dry-down coefficient (k) in order to develop models to predict kernel moisture loss and time to harvest (harvest readiness) under a wide range of sowing date environments. Kernel moisture datasets from field experiments in Pergamino (Argentina) and Kansas (US) were used for training and testing post-maturity grain dry-down models. Two k coefficients were defined based on the solar radiation and the VPD explored during the pre- and post-maturity period (kpre and kpost). Models including kpre and kpost were tested under a wide range of sowing date environments, presenting high accuracy in predicting kernel moisture (R2 ∼ 0.80; RRMSE ∼ 0.15) and harvest readiness (R2 = 0.99; RRMSE ∼ 0.05). This study provides the foundation for developing an interactive digital platform to estimate harvest time to assist farmers and agronomists with this critical decision.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
KERNEL MOISTURE  
dc.subject
POST-MATURITY DRYING  
dc.subject
SOWING DATE  
dc.subject
ZEA MAYS L.  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Enhancing maize grain dry-down predictive models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-05T15:06:17Z  
dc.journal.volume
334  
dc.journal.pagination
1-8  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Chazarreta, Yésica Daniela. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina  
dc.description.fil
Fil: Carcedo, Ana Julia Paula. Kansas State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina  
dc.description.fil
Fil: Massigoge, Ignacio. Kansas State University; Estados Unidos  
dc.description.fil
Fil: Amás, Juan Ignacio. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Fernandez, Javier A.. The University of Queensland; Australia  
dc.description.fil
Fil: Ciampitti, Ignacio Antonio. Kansas State University; Estados Unidos  
dc.description.fil
Fil: Otegui, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina  
dc.journal.title
Agricultural And Forest Meteorology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0168192323001193  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.agrformet.2023.109427