Mostrar el registro sencillo del ítem
dc.contributor.author
Chazarreta, Yésica Daniela
dc.contributor.author
Carcedo, Ana Julia Paula
dc.contributor.author
Alvarez Prado, Santiago
dc.contributor.author
Massigoge, Ignacio
dc.contributor.author
Amás, Juan Ignacio
dc.contributor.author
Fernandez, Javier A.
dc.contributor.author
Ciampitti, Ignacio Antonio
dc.contributor.author
Otegui, Maria Elena
dc.date.available
2023-12-07T14:55:32Z
dc.date.issued
2023-05
dc.identifier.citation
Chazarreta, Yésica Daniela; Carcedo, Ana Julia Paula; Alvarez Prado, Santiago; Massigoge, Ignacio; Amás, Juan Ignacio; et al.; Enhancing maize grain dry-down predictive models; Elsevier Science; Agricultural And Forest Meteorology; 334; 5-2023; 1-8
dc.identifier.issn
0168-1923
dc.identifier.uri
http://hdl.handle.net/11336/219668
dc.description.abstract
Predicting the optimal harvest date after crop physiological maturity is highly relevant for maize (Zea mays L.). While harvesting before achieving the commercial kernel moisture implies additional costs of grain drying, a delayed harvest of maize crops is linked to grain yield and quality losses. The main objective of this work was to identify weather variables affecting the post-maturity grain dry-down coefficient (k) in order to develop models to predict kernel moisture loss and time to harvest (harvest readiness) under a wide range of sowing date environments. Kernel moisture datasets from field experiments in Pergamino (Argentina) and Kansas (US) were used for training and testing post-maturity grain dry-down models. Two k coefficients were defined based on the solar radiation and the VPD explored during the pre- and post-maturity period (kpre and kpost). Models including kpre and kpost were tested under a wide range of sowing date environments, presenting high accuracy in predicting kernel moisture (R2 ∼ 0.80; RRMSE ∼ 0.15) and harvest readiness (R2 = 0.99; RRMSE ∼ 0.05). This study provides the foundation for developing an interactive digital platform to estimate harvest time to assist farmers and agronomists with this critical decision.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
KERNEL MOISTURE
dc.subject
POST-MATURITY DRYING
dc.subject
SOWING DATE
dc.subject
ZEA MAYS L.
dc.subject.classification
Agricultura
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Enhancing maize grain dry-down predictive models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-12-05T15:06:17Z
dc.journal.volume
334
dc.journal.pagination
1-8
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Chazarreta, Yésica Daniela. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina
dc.description.fil
Fil: Carcedo, Ana Julia Paula. Kansas State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina
dc.description.fil
Fil: Massigoge, Ignacio. Kansas State University; Estados Unidos
dc.description.fil
Fil: Amás, Juan Ignacio. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Fernandez, Javier A.. The University of Queensland; Australia
dc.description.fil
Fil: Ciampitti, Ignacio Antonio. Kansas State University; Estados Unidos
dc.description.fil
Fil: Otegui, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina
dc.journal.title
Agricultural And Forest Meteorology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0168192323001193
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.agrformet.2023.109427
Archivos asociados