Artículo
Enhancing maize grain dry-down predictive models
Chazarreta, Yésica Daniela
; Carcedo, Ana Julia Paula
; Alvarez Prado, Santiago
; Massigoge, Ignacio; Amás, Juan Ignacio
; Fernandez, Javier A.; Ciampitti, Ignacio Antonio; Otegui, Maria Elena
Fecha de publicación:
05/2023
Editorial:
Elsevier Science
Revista:
Agricultural And Forest Meteorology
ISSN:
0168-1923
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Predicting the optimal harvest date after crop physiological maturity is highly relevant for maize (Zea mays L.). While harvesting before achieving the commercial kernel moisture implies additional costs of grain drying, a delayed harvest of maize crops is linked to grain yield and quality losses. The main objective of this work was to identify weather variables affecting the post-maturity grain dry-down coefficient (k) in order to develop models to predict kernel moisture loss and time to harvest (harvest readiness) under a wide range of sowing date environments. Kernel moisture datasets from field experiments in Pergamino (Argentina) and Kansas (US) were used for training and testing post-maturity grain dry-down models. Two k coefficients were defined based on the solar radiation and the VPD explored during the pre- and post-maturity period (kpre and kpost). Models including kpre and kpost were tested under a wide range of sowing date environments, presenting high accuracy in predicting kernel moisture (R2 ∼ 0.80; RRMSE ∼ 0.15) and harvest readiness (R2 = 0.99; RRMSE ∼ 0.05). This study provides the foundation for developing an interactive digital platform to estimate harvest time to assist farmers and agronomists with this critical decision.
Palabras clave:
KERNEL MOISTURE
,
POST-MATURITY DRYING
,
SOWING DATE
,
ZEA MAYS L.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Chazarreta, Yésica Daniela; Carcedo, Ana Julia Paula; Alvarez Prado, Santiago; Massigoge, Ignacio; Amás, Juan Ignacio; et al.; Enhancing maize grain dry-down predictive models; Elsevier Science; Agricultural And Forest Meteorology; 334; 5-2023; 1-8
Compartir
Altmétricas