Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Enhancing maize grain dry-down predictive models

Chazarreta, Yésica DanielaIcon ; Carcedo, Ana Julia PaulaIcon ; Alvarez Prado, SantiagoIcon ; Massigoge, Ignacio; Amás, Juan IgnacioIcon ; Fernandez, Javier A.; Ciampitti, Ignacio Antonio; Otegui, Maria ElenaIcon
Fecha de publicación: 05/2023
Editorial: Elsevier Science
Revista: Agricultural And Forest Meteorology
ISSN: 0168-1923
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

Predicting the optimal harvest date after crop physiological maturity is highly relevant for maize (Zea mays L.). While harvesting before achieving the commercial kernel moisture implies additional costs of grain drying, a delayed harvest of maize crops is linked to grain yield and quality losses. The main objective of this work was to identify weather variables affecting the post-maturity grain dry-down coefficient (k) in order to develop models to predict kernel moisture loss and time to harvest (harvest readiness) under a wide range of sowing date environments. Kernel moisture datasets from field experiments in Pergamino (Argentina) and Kansas (US) were used for training and testing post-maturity grain dry-down models. Two k coefficients were defined based on the solar radiation and the VPD explored during the pre- and post-maturity period (kpre and kpost). Models including kpre and kpost were tested under a wide range of sowing date environments, presenting high accuracy in predicting kernel moisture (R2 ∼ 0.80; RRMSE ∼ 0.15) and harvest readiness (R2 = 0.99; RRMSE ∼ 0.05). This study provides the foundation for developing an interactive digital platform to estimate harvest time to assist farmers and agronomists with this critical decision.
Palabras clave: KERNEL MOISTURE , POST-MATURITY DRYING , SOWING DATE , ZEA MAYS L.
Ver el registro completo
 
Archivos asociados
Tamaño: 2.040Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/219668
URL: https://linkinghub.elsevier.com/retrieve/pii/S0168192323001193
DOI: http://dx.doi.org/10.1016/j.agrformet.2023.109427
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Chazarreta, Yésica Daniela; Carcedo, Ana Julia Paula; Alvarez Prado, Santiago; Massigoge, Ignacio; Amás, Juan Ignacio; et al.; Enhancing maize grain dry-down predictive models; Elsevier Science; Agricultural And Forest Meteorology; 334; 5-2023; 1-8
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES