Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Red adversaria generativa aplicada a la eliminación de ruido y artefactos en sinogramas de tomografía optoacústica

Título: Generative Adversarial Network Applied to the Elimination of Noise and Artifacts in Optoacoustic Tomography Sinograms
Montilla, Delfina; González, Martín GermánIcon ; Rey Vega, Leonardo JavierIcon
Fecha de publicación: 06/2023
Editorial: Universidad de Buenos Aires. Facultad de Ingeniería
Revista: Elektron
ISSN: 2525-0159
Idioma: Español
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica; Ciencias de la Computación; Óptica

Resumen

 
El objetivo de este trabajo es el estudio de un método de pre-procesamiento de los datos medidos por un tomógrafo optoacústico bidimensional para reducir o eliminar los artefactos introducidos por la escasa cantidad de detectores en el sistema experimental y el acotado ancho de banda de estos. Para esta tarea, se utilizó una red neuronal profunda generativa adversaria y se comparó su rendimiento con una red neuronal de referencia U-Net. En la mayoría de los casos de testeo realizados, se encontró una leve mejora aplicando la red propuesta al medir la correlación de Pearson y la relación señal a ruido piso entre la imagen reconstruida producto de los datos procesados por el modelo y la imagen de alta resolución de referencia.
 
The goal of this work is to study a preprocessing method for the data measured by a two-dimensional optoacoustic tomograph in order to reduce or eliminate artifacts introduced by the low number of detectors in the experimental setup and their limited bandwidth. A generative adversarial deep neural network was used to accomplish this task and its performance was compared with a reference U-Net neural network. In most of the test cases carried out, a slight improvement was found by applying the proposed network when measuring the Pearson correlation and the peak signal noise ratio between the reconstructed image product of the data processed by the model and the high-resolution reference image.
 
Palabras clave: APRENDIZAJE PROFUNDO , TOMOGRAFÍA OPTOACÚSTICA , GAN
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.015Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/219472
URL: http://elektron.fi.uba.ar/index.php/elektron/article/view/180
DOI: http://dx.doi.org/10.37537/rev.elektron.7.1.180.2023
Colecciones
Articulos(CSC)
Articulos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Montilla, Delfina; González, Martín Germán; Rey Vega, Leonardo Javier; Red adversaria generativa aplicada a la eliminación de ruido y artefactos en sinogramas de tomografía optoacústica; Universidad de Buenos Aires. Facultad de Ingeniería; Elektron; 7; 1; 6-2023; 7-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES