Mostrar el registro sencillo del ítem
dc.contributor.author
Duong Trung, Nghia
dc.contributor.author
Born, Stefan
dc.contributor.author
Kim, Jong Woo
dc.contributor.author
Schermeyer, Marie Therese
dc.contributor.author
Paulick, Katharina
dc.contributor.author
Borisyak, Maxim
dc.contributor.author
Cruz Bournazou, Mariano Nicolas
dc.contributor.author
Werner, Thorben
dc.contributor.author
Scholz, Randolf
dc.contributor.author
Schmidt Thieme, Lars
dc.contributor.author
Neubauer, Peter
dc.contributor.author
Martínez, Ernesto Carlos

dc.date.available
2023-12-04T11:32:30Z
dc.date.issued
2023-01
dc.identifier.citation
Duong Trung, Nghia; Born, Stefan; Kim, Jong Woo; Schermeyer, Marie Therese; Paulick, Katharina; et al.; When bioprocess engineering meets machine learning: A survey from the perspective of automated bioprocess development; Elsevier Science SA; Biochemical Engineering Journal; 190; 1-2023; 1-21
dc.identifier.issn
1369-703X
dc.identifier.uri
http://hdl.handle.net/11336/219149
dc.description.abstract
Machine learning (ML) is becoming increasingly crucial in many fields of engineering but has not yet played out its full potential in bioprocess engineering. While experimentation has been accelerated by increasing levels of lab automation, experimental planning and data modeling are still largerly depend on human intervention. ML can be seen as a set of tools that contribute to the automation of the whole experimental cycle, including model building and practical planning, thus allowing human experts to focus on the more demanding and overarching cognitive tasks. First, probabilistic programming is used for the autonomous building of predictive models. Second, machine learning automatically assesses alternative decisions by planning experiments to test hypotheses and conducting investigations to gather informative data that focus on model selection based on the uncertainty of model predictions. This review provides a comprehensive overview of ML-based automation in bioprocess development. On the one hand, the biotech and bioengineering community should be aware of the potential and, most importantly, the limitation of existing ML solutions for their application in biotechnology and biopharma. On the other hand, it is essential to identify the missing links to enable the easy implementation of ML and Artificial Intelligence (AI) tools in valuable solutions for the bio-community. There is no one-fits-all procedure; however, this review should help identify the potential for automating model building by combining first-principles biotechnology knowledge and ML methods to address the reproducibility crisis in bioprocess development.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science SA

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ACTIVE LEARNING
dc.subject
AUTOMATION
dc.subject
BIOPROCESS DEVELOPMENT
dc.subject
REINFORCEMENT LEARNING
dc.subject
REPRODUCIBILITY CRISIS
dc.subject.classification
Bioprocesamiento Tecnológico, Biocatálisis, Fermentación

dc.subject.classification
Biotecnología Industrial

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
When bioprocess engineering meets machine learning: A survey from the perspective of automated bioprocess development
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-29T13:24:04Z
dc.journal.volume
190
dc.journal.pagination
1-21
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Duong Trung, Nghia. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Born, Stefan. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Kim, Jong Woo. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Schermeyer, Marie Therese. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Paulick, Katharina. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Borisyak, Maxim. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Cruz Bournazou, Mariano Nicolas. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Werner, Thorben. University of Hildesheim; Alemania
dc.description.fil
Fil: Scholz, Randolf. University of Hildesheim; Alemania
dc.description.fil
Fil: Schmidt Thieme, Lars. University of Hildesheim; Alemania
dc.description.fil
Fil: Neubauer, Peter. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Martínez, Ernesto Carlos. Technishe Universitat Berlin; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Biochemical Engineering Journal

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bej.2022.108764
Archivos asociados