Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

When bioprocess engineering meets machine learning: A survey from the perspective of automated bioprocess development

Duong Trung, Nghia; Born, Stefan; Kim, Jong Woo; Schermeyer, Marie Therese; Paulick, Katharina; Borisyak, Maxim; Cruz Bournazou, Mariano Nicolas; Werner, Thorben; Scholz, Randolf; Schmidt Thieme, Lars; Neubauer, Peter; Martínez, Ernesto CarlosIcon
Fecha de publicación: 01/2023
Editorial: Elsevier Science SA
Revista: Biochemical Engineering Journal
ISSN: 1369-703X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Bioprocesamiento Tecnológico, Biocatálisis, Fermentación

Resumen

Machine learning (ML) is becoming increasingly crucial in many fields of engineering but has not yet played out its full potential in bioprocess engineering. While experimentation has been accelerated by increasing levels of lab automation, experimental planning and data modeling are still largerly depend on human intervention. ML can be seen as a set of tools that contribute to the automation of the whole experimental cycle, including model building and practical planning, thus allowing human experts to focus on the more demanding and overarching cognitive tasks. First, probabilistic programming is used for the autonomous building of predictive models. Second, machine learning automatically assesses alternative decisions by planning experiments to test hypotheses and conducting investigations to gather informative data that focus on model selection based on the uncertainty of model predictions. This review provides a comprehensive overview of ML-based automation in bioprocess development. On the one hand, the biotech and bioengineering community should be aware of the potential and, most importantly, the limitation of existing ML solutions for their application in biotechnology and biopharma. On the other hand, it is essential to identify the missing links to enable the easy implementation of ML and Artificial Intelligence (AI) tools in valuable solutions for the bio-community. There is no one-fits-all procedure; however, this review should help identify the potential for automating model building by combining first-principles biotechnology knowledge and ML methods to address the reproducibility crisis in bioprocess development.
Palabras clave: ACTIVE LEARNING , AUTOMATION , BIOPROCESS DEVELOPMENT , REINFORCEMENT LEARNING , REPRODUCIBILITY CRISIS
Ver el registro completo
 
Archivos asociados
Tamaño: 5.631Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/219149
DOI: http://dx.doi.org/10.1016/j.bej.2022.108764
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Duong Trung, Nghia; Born, Stefan; Kim, Jong Woo; Schermeyer, Marie Therese; Paulick, Katharina; et al.; When bioprocess engineering meets machine learning: A survey from the perspective of automated bioprocess development; Elsevier Science SA; Biochemical Engineering Journal; 190; 1-2023; 1-21
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES