Mostrar el registro sencillo del ítem

dc.contributor.author
Ferrero, Mariano  
dc.contributor.author
Vignolo, Leandro Daniel  
dc.contributor.author
Vanrell, Sebastián Rodrigo  
dc.contributor.author
Martínez Rau, Luciano Sebastián  
dc.contributor.author
Chelotti, Jose Omar  
dc.contributor.author
Galli, Julio Ricardo  
dc.contributor.author
Giovanini, Leonardo Luis  
dc.contributor.author
Rufiner, Hugo Leonardo  
dc.date.available
2023-11-29T19:45:48Z  
dc.date.issued
2023-05  
dc.identifier.citation
Ferrero, Mariano; Vignolo, Leandro Daniel; Vanrell, Sebastián Rodrigo; Martínez Rau, Luciano Sebastián; Chelotti, Jose Omar; et al.; A full end-to-end deep approach for detecting and classifying jaw movements from acoustic signals in grazing cattle; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 121; 5-2023; 1-11  
dc.identifier.issn
0952-1976  
dc.identifier.uri
http://hdl.handle.net/11336/218859  
dc.description.abstract
Monitoring the foraging behaviour of ruminants is a key task to improve their productivity and welfare. During the last decades, several monitoring approaches have been proposed based on different types of sensors such as pressure-based, accelerometers and microphones. Among them, microphones have been one of the most promising options because acoustic signals provide comprehensive information about the foraging behaviour. In this work, a fully end-to-end deep architecture is proposed in order to perform both detection and classification tasks of masticatory events in one step, relying only on raw acoustic signals. The main benefit of this novel approach is the substitution of handcrafted preprocessing and feature extraction phases for a pure deep learning approach, which has shown better performance in related fields. Furthermore, different data augmentation techniques have been evaluated to address the data shortness for models development, typical in this field. The results demonstrate that the proposed architecture achieves a F1 score value of 79.82, which represents an increment close to 18% with respect to other state-of-the-art algorithms. Moreover, the proposed data augmentation techniques provide further performance enhancements, emerging as interesting alternatives in this field.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ACOUSTIC MONITORING  
dc.subject
DATA AUGMENTATION  
dc.subject
DEEP LEARNING  
dc.subject
PRECISION LIVESTOCK FARMING  
dc.subject
RUMINANT FORAGING BEHAVIOUR  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A full end-to-end deep approach for detecting and classifying jaw movements from acoustic signals in grazing cattle  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-28T14:53:20Z  
dc.journal.volume
121  
dc.journal.pagination
1-11  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Ferrero, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Vanrell, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Martínez Rau, Luciano Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Université de Liège; Bélgica  
dc.description.fil
Fil: Galli, Julio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina  
dc.description.fil
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina  
dc.journal.title
Engineering Applications Of Artificial Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0952197623002002  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.engappai.2023.106016