Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A full end-to-end deep approach for detecting and classifying jaw movements from acoustic signals in grazing cattle

Ferrero, MarianoIcon ; Vignolo, Leandro DanielIcon ; Vanrell, Sebastián RodrigoIcon ; Martínez Rau, Luciano SebastiánIcon ; Chelotti, Jose OmarIcon ; Galli, Julio Ricardo; Giovanini, Leonardo LuisIcon ; Rufiner, Hugo LeonardoIcon
Fecha de publicación: 05/2023
Editorial: Pergamon-Elsevier Science Ltd
Revista: Engineering Applications Of Artificial Intelligence
ISSN: 0952-1976
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Monitoring the foraging behaviour of ruminants is a key task to improve their productivity and welfare. During the last decades, several monitoring approaches have been proposed based on different types of sensors such as pressure-based, accelerometers and microphones. Among them, microphones have been one of the most promising options because acoustic signals provide comprehensive information about the foraging behaviour. In this work, a fully end-to-end deep architecture is proposed in order to perform both detection and classification tasks of masticatory events in one step, relying only on raw acoustic signals. The main benefit of this novel approach is the substitution of handcrafted preprocessing and feature extraction phases for a pure deep learning approach, which has shown better performance in related fields. Furthermore, different data augmentation techniques have been evaluated to address the data shortness for models development, typical in this field. The results demonstrate that the proposed architecture achieves a F1 score value of 79.82, which represents an increment close to 18% with respect to other state-of-the-art algorithms. Moreover, the proposed data augmentation techniques provide further performance enhancements, emerging as interesting alternatives in this field.
Palabras clave: ACOUSTIC MONITORING , DATA AUGMENTATION , DEEP LEARNING , PRECISION LIVESTOCK FARMING , RUMINANT FORAGING BEHAVIOUR
Ver el registro completo
 
Archivos asociados
Tamaño: 963.1Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/218859
URL: https://www.sciencedirect.com/science/article/abs/pii/S0952197623002002
DOI: http://dx.doi.org/10.1016/j.engappai.2023.106016
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Ferrero, Mariano; Vignolo, Leandro Daniel; Vanrell, Sebastián Rodrigo; Martínez Rau, Luciano Sebastián; Chelotti, Jose Omar; et al.; A full end-to-end deep approach for detecting and classifying jaw movements from acoustic signals in grazing cattle; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 121; 5-2023; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES