Artículo
On dyadic nonlocal Schrödinger equations with Besov initial data
Fecha de publicación:
05/2013
Editorial:
Elsevier
Revista:
Journal Of Mathematical Analysis And Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we consider the pointwise convergence to the initial data for the Schrödinger–Dirac equation i∂u∂t=Dβu with u(x,0)=u0 in a dyadic Besov space. Here Dβ denotes the fractional derivative of order β associated to the dyadic distance δ on R+. The main tools are a summability formula for the kernel of Dβ and pointwise estimates of the corresponding maximal operator in terms of the dyadic Hardy–Littlewood function and the Calderón sharp maximal operator.
Palabras clave:
Schrödinger Equation
,
Besov Spaces
,
Haar Basis
,
Nonlocal Derivatives
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Aimar, Hugo Alejandro; Bongioanni, Bruno; Gomez, Ivana Daniela; On dyadic nonlocal Schrödinger equations with Besov initial data; Elsevier; Journal Of Mathematical Analysis And Applications; 407; 1; 5-2013; 23-34
Compartir
Altmétricas