Mostrar el registro sencillo del ítem
dc.contributor.author
Bivort Haiek, F.
dc.contributor.author
Mendez, Marta Patricia Alejandra
dc.contributor.author
Montanari, Claudia Carmen
dc.contributor.author
Mitnik, Dario Marcelo
dc.date.available
2023-11-13T12:21:44Z
dc.date.issued
2022-12
dc.identifier.citation
Bivort Haiek, F.; Mendez, Marta Patricia Alejandra; Montanari, Claudia Carmen; Mitnik, Dario Marcelo; ESPNN: A novel electronic stopping power neural-network code built on the IAEA stopping power database: I. Atomic targets; American Institute of Physics; Journal of Applied Physics; 132; 24; 12-2022; 1-15
dc.identifier.issn
0021-8979
dc.identifier.uri
http://hdl.handle.net/11336/217845
dc.description.abstract
The International Atomic Energy Agency (IAEA) stopping power database is a highly valued public resource compiling most of the experimental measurements published over nearly a century. The database - accessible to the global scientific community - is continuously updated and has been extensively employed in theoretical and experimental research for more than 30 years. This work aims to employ machine learning algorithms on the 2021 IAEA database to predict accurate electronic stopping power cross sections for any ion and target combination in a wide range of incident energies. Unsupervised machine learning methods are applied to clean the database in an automated manner. These techniques purge the data by removing suspicious outliers and old isolated values. A large portion of the remaining data is used to train a deep neural network, while the rest is set aside, constituting the test set. The present work considers collisional systems only with atomic targets. The first version of the ESPNN (electronic stopping power neural-network code), openly available to users, is shown to yield predicted values in excellent agreement with the experimental results of the test set.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Heavy ion beams
dc.subject
Stopping power
dc.subject
Inelastic proton scattering
dc.subject
Artificial neural networks
dc.subject
Machine learning
dc.subject.classification
Física Atómica, Molecular y Química
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
ESPNN: A novel electronic stopping power neural-network code built on the IAEA stopping power database: I. Atomic targets
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-09T13:47:00Z
dc.journal.volume
132
dc.journal.number
24
dc.journal.pagination
1-15
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Bivort Haiek, F.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
dc.description.fil
Fil: Mendez, Marta Patricia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
dc.description.fil
Fil: Montanari, Claudia Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
dc.description.fil
Fil: Mitnik, Dario Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
dc.journal.title
Journal of Applied Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0130875
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0130875
Archivos asociados