Artículo
ESPNN: A novel electronic stopping power neural-network code built on the IAEA stopping power database: I. Atomic targets
Bivort Haiek, F.; Mendez, Marta Patricia Alejandra
; Montanari, Claudia Carmen
; Mitnik, Dario Marcelo
Fecha de publicación:
12/2022
Editorial:
American Institute of Physics
Revista:
Journal of Applied Physics
ISSN:
0021-8979
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The International Atomic Energy Agency (IAEA) stopping power database is a highly valued public resource compiling most of the experimental measurements published over nearly a century. The database - accessible to the global scientific community - is continuously updated and has been extensively employed in theoretical and experimental research for more than 30 years. This work aims to employ machine learning algorithms on the 2021 IAEA database to predict accurate electronic stopping power cross sections for any ion and target combination in a wide range of incident energies. Unsupervised machine learning methods are applied to clean the database in an automated manner. These techniques purge the data by removing suspicious outliers and old isolated values. A large portion of the remaining data is used to train a deep neural network, while the rest is set aside, constituting the test set. The present work considers collisional systems only with atomic targets. The first version of the ESPNN (electronic stopping power neural-network code), openly available to users, is shown to yield predicted values in excellent agreement with the experimental results of the test set.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Bivort Haiek, F.; Mendez, Marta Patricia Alejandra; Montanari, Claudia Carmen; Mitnik, Dario Marcelo; ESPNN: A novel electronic stopping power neural-network code built on the IAEA stopping power database: I. Atomic targets; American Institute of Physics; Journal of Applied Physics; 132; 24; 12-2022; 1-15
Compartir
Altmétricas