Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

ESPNN: A novel electronic stopping power neural-network code built on the IAEA stopping power database: I. Atomic targets

Bivort Haiek, F.; Mendez, Marta Patricia AlejandraIcon ; Montanari, Claudia CarmenIcon ; Mitnik, Dario MarceloIcon
Fecha de publicación: 12/2022
Editorial: American Institute of Physics
Revista: Journal of Applied Physics
ISSN: 0021-8979
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física Atómica, Molecular y Química

Resumen

The International Atomic Energy Agency (IAEA) stopping power database is a highly valued public resource compiling most of the experimental measurements published over nearly a century. The database - accessible to the global scientific community - is continuously updated and has been extensively employed in theoretical and experimental research for more than 30 years. This work aims to employ machine learning algorithms on the 2021 IAEA database to predict accurate electronic stopping power cross sections for any ion and target combination in a wide range of incident energies. Unsupervised machine learning methods are applied to clean the database in an automated manner. These techniques purge the data by removing suspicious outliers and old isolated values. A large portion of the remaining data is used to train a deep neural network, while the rest is set aside, constituting the test set. The present work considers collisional systems only with atomic targets. The first version of the ESPNN (electronic stopping power neural-network code), openly available to users, is shown to yield predicted values in excellent agreement with the experimental results of the test set.
Palabras clave: Heavy ion beams , Stopping power , Inelastic proton scattering , Artificial neural networks , Machine learning
Ver el registro completo
 
Archivos asociados
Tamaño: 3.537Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/217845
URL: https://aip.scitation.org/doi/10.1063/5.0130875
DOI: http://dx.doi.org/10.1063/5.0130875
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Bivort Haiek, F.; Mendez, Marta Patricia Alejandra; Montanari, Claudia Carmen; Mitnik, Dario Marcelo; ESPNN: A novel electronic stopping power neural-network code built on the IAEA stopping power database: I. Atomic targets; American Institute of Physics; Journal of Applied Physics; 132; 24; 12-2022; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES