Mostrar el registro sencillo del ítem
dc.contributor.author
Arnone, Guido
dc.contributor.author
Cortiñas, Guillermo Horacio
dc.date.available
2023-11-10T12:40:02Z
dc.date.issued
2022-11
dc.identifier.citation
Arnone, Guido; Cortiñas, Guillermo Horacio; Graded K-theory and Leavitt path algebras; Springer; Journal Of Algebraic Combinatorics; 58; 2; 11-2022; 399-434
dc.identifier.issn
0925-9899
dc.identifier.uri
http://hdl.handle.net/11336/217710
dc.description.abstract
Let G be a group and ℓ a commutative unital ∗ -ring with an element λ∈ ℓ such that λ+ λ∗= 1. We introduce variants of hermitian bivariant K-theory for ∗ -algebras equipped with a G-action or a G-grading. For any graph E with finitely many vertices and any weight function ω: E1→ G, a distinguished triangle for L(E) = Lℓ(E) in the hermitian G-graded bivariant K-theory category kkGgrh is obtained, describing L(E) as a cone of a matrix with coefficients in Z[G] associated to the incidence matrix of E and the weight ω. In the particular case of the standard Z-grading, and under mild assumptions on ℓ, we show that the isomorphism class of L(E) in kkZgrh is determined by the graded Bowen–Franks module of E. We also obtain results for the graded and hermitian graded K-theory of ∗ -algebras in general and Leavitt path algebras in particular which are of independent interest, including hermitian and bivariant versions of Dade’s theorem and of Van den Bergh’s exact sequence relating graded and ungraded K-theory.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BIVARIANT K-THEORY
dc.subject
GRADED K-THEORY
dc.subject
HERMITIAN K-THEORY
dc.subject
LEAVITT PATH ALGEBRAS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Graded K-theory and Leavitt path algebras
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-09T14:16:33Z
dc.journal.volume
58
dc.journal.number
2
dc.journal.pagination
399-434
dc.journal.pais
Alemania
dc.description.fil
Fil: Arnone, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Journal Of Algebraic Combinatorics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10801-022-01184-5
Archivos asociados