Mostrar el registro sencillo del ítem

dc.contributor.author
Arnone, Guido  
dc.contributor.author
Cortiñas, Guillermo Horacio  
dc.date.available
2023-11-10T12:40:02Z  
dc.date.issued
2022-11  
dc.identifier.citation
Arnone, Guido; Cortiñas, Guillermo Horacio; Graded K-theory and Leavitt path algebras; Springer; Journal Of Algebraic Combinatorics; 58; 2; 11-2022; 399-434  
dc.identifier.issn
0925-9899  
dc.identifier.uri
http://hdl.handle.net/11336/217710  
dc.description.abstract
Let G be a group and ℓ a commutative unital ∗ -ring with an element λ∈ ℓ such that λ+ λ∗= 1. We introduce variants of hermitian bivariant K-theory for ∗ -algebras equipped with a G-action or a G-grading. For any graph E with finitely many vertices and any weight function ω: E1→ G, a distinguished triangle for L(E) = Lℓ(E) in the hermitian G-graded bivariant K-theory category kkGgrh is obtained, describing L(E) as a cone of a matrix with coefficients in Z[G] associated to the incidence matrix of E and the weight ω. In the particular case of the standard Z-grading, and under mild assumptions on ℓ, we show that the isomorphism class of L(E) in kkZgrh is determined by the graded Bowen–Franks module of E. We also obtain results for the graded and hermitian graded K-theory of ∗ -algebras in general and Leavitt path algebras in particular which are of independent interest, including hermitian and bivariant versions of Dade’s theorem and of Van den Bergh’s exact sequence relating graded and ungraded K-theory.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIVARIANT K-THEORY  
dc.subject
GRADED K-THEORY  
dc.subject
HERMITIAN K-THEORY  
dc.subject
LEAVITT PATH ALGEBRAS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Graded K-theory and Leavitt path algebras  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-09T14:16:33Z  
dc.journal.volume
58  
dc.journal.number
2  
dc.journal.pagination
399-434  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Arnone, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Journal Of Algebraic Combinatorics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10801-022-01184-5