Artículo
Graded K-theory and Leavitt path algebras
Fecha de publicación:
11/2022
Editorial:
Springer
Revista:
Journal Of Algebraic Combinatorics
ISSN:
0925-9899
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let G be a group and ℓ a commutative unital ∗ -ring with an element λ∈ ℓ such that λ+ λ∗= 1. We introduce variants of hermitian bivariant K-theory for ∗ -algebras equipped with a G-action or a G-grading. For any graph E with finitely many vertices and any weight function ω: E1→ G, a distinguished triangle for L(E) = Lℓ(E) in the hermitian G-graded bivariant K-theory category kkGgrh is obtained, describing L(E) as a cone of a matrix with coefficients in Z[G] associated to the incidence matrix of E and the weight ω. In the particular case of the standard Z-grading, and under mild assumptions on ℓ, we show that the isomorphism class of L(E) in kkZgrh is determined by the graded Bowen–Franks module of E. We also obtain results for the graded and hermitian graded K-theory of ∗ -algebras in general and Leavitt path algebras in particular which are of independent interest, including hermitian and bivariant versions of Dade’s theorem and of Van den Bergh’s exact sequence relating graded and ungraded K-theory.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Arnone, Guido; Cortiñas, Guillermo Horacio; Graded K-theory and Leavitt path algebras; Springer; Journal Of Algebraic Combinatorics; 58; 2; 11-2022; 399-434
Compartir
Altmétricas