Mostrar el registro sencillo del ítem

dc.contributor.author
Sulca, Diego Armando  
dc.date.available
2023-11-10T12:38:06Z  
dc.date.issued
2022-10  
dc.identifier.citation
Sulca, Diego Armando; On the degree of polynomial subgroup growth of nilpotent groups; Springer; Mathematische Zeitschrift; 303; 1; 10-2022; 1-26  
dc.identifier.issn
0025-5874  
dc.identifier.uri
http://hdl.handle.net/11336/217706  
dc.description.abstract
Let N be a finitely generated nilpotent group. The subgroup zeta function ζN⩽(s) and the normal zeta function ζN⊲(s) of N are Dirichlet series enumerating the finite index subgroups or the finite index normal subgroups of N. We present results about their abscissae of convergence αN⩽ and αN⊲, also known as the degrees of polynomial subgroup growth and polynomial normal subgroup growth of N, respectively. We first prove some upper bounds for the functions N↦αN⩽ and N↦αN⊲ when restricted to the class of torsion-free nilpotent groups of a fixed Hirsch length. We then show that if two finitely generated nilpotent groups have isomorphic C-Mal’cev completions, then their subgroup (resp. normal) zeta functions have the same abscissa of convergence. This follows, via the Mal’cev correspondence, from a similar result that we establish for zeta functions of rings. This result is obtained by proving that the abscissa of convergence of an Euler product of certain Igusa-type local zeta functions introduced by du Sautoy and Grunewald remains invariant under base change. We also apply this methodology to formulate and prove a version of our result about nilpotent groups for virtually nilpotent groups. As a side application of our result about zeta functions of rings, we present a result concerning the distribution of orders in number fields.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SUBGROUP GROWTH  
dc.subject
ZETA FUNCTIONS OF GROUP AND RINGS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the degree of polynomial subgroup growth of nilpotent groups  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-09T13:44:34Z  
dc.journal.volume
303  
dc.journal.number
1  
dc.journal.pagination
1-26  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Sulca, Diego Armando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
Mathematische Zeitschrift  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00209-022-03156-8