Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On the degree of polynomial subgroup growth of nilpotent groups

Sulca, Diego ArmandoIcon
Fecha de publicación: 10/2022
Editorial: Springer
Revista: Mathematische Zeitschrift
ISSN: 0025-5874
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Let N be a finitely generated nilpotent group. The subgroup zeta function ζN⩽(s) and the normal zeta function ζN⊲(s) of N are Dirichlet series enumerating the finite index subgroups or the finite index normal subgroups of N. We present results about their abscissae of convergence αN⩽ and αN⊲, also known as the degrees of polynomial subgroup growth and polynomial normal subgroup growth of N, respectively. We first prove some upper bounds for the functions N↦αN⩽ and N↦αN⊲ when restricted to the class of torsion-free nilpotent groups of a fixed Hirsch length. We then show that if two finitely generated nilpotent groups have isomorphic C-Mal’cev completions, then their subgroup (resp. normal) zeta functions have the same abscissa of convergence. This follows, via the Mal’cev correspondence, from a similar result that we establish for zeta functions of rings. This result is obtained by proving that the abscissa of convergence of an Euler product of certain Igusa-type local zeta functions introduced by du Sautoy and Grunewald remains invariant under base change. We also apply this methodology to formulate and prove a version of our result about nilpotent groups for virtually nilpotent groups. As a side application of our result about zeta functions of rings, we present a result concerning the distribution of orders in number fields.
Palabras clave: SUBGROUP GROWTH , ZETA FUNCTIONS OF GROUP AND RINGS
Ver el registro completo
 
Archivos asociados
Tamaño: 494.6Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/217706
DOI: http://dx.doi.org/10.1007/s00209-022-03156-8
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Sulca, Diego Armando; On the degree of polynomial subgroup growth of nilpotent groups; Springer; Mathematische Zeitschrift; 303; 1; 10-2022; 1-26
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES