Artículo
On the degree of polynomial subgroup growth of nilpotent groups
Fecha de publicación:
10/2022
Editorial:
Springer
Revista:
Mathematische Zeitschrift
ISSN:
0025-5874
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let N be a finitely generated nilpotent group. The subgroup zeta function ζN⩽(s) and the normal zeta function ζN⊲(s) of N are Dirichlet series enumerating the finite index subgroups or the finite index normal subgroups of N. We present results about their abscissae of convergence αN⩽ and αN⊲, also known as the degrees of polynomial subgroup growth and polynomial normal subgroup growth of N, respectively. We first prove some upper bounds for the functions N↦αN⩽ and N↦αN⊲ when restricted to the class of torsion-free nilpotent groups of a fixed Hirsch length. We then show that if two finitely generated nilpotent groups have isomorphic C-Mal’cev completions, then their subgroup (resp. normal) zeta functions have the same abscissa of convergence. This follows, via the Mal’cev correspondence, from a similar result that we establish for zeta functions of rings. This result is obtained by proving that the abscissa of convergence of an Euler product of certain Igusa-type local zeta functions introduced by du Sautoy and Grunewald remains invariant under base change. We also apply this methodology to formulate and prove a version of our result about nilpotent groups for virtually nilpotent groups. As a side application of our result about zeta functions of rings, we present a result concerning the distribution of orders in number fields.
Palabras clave:
SUBGROUP GROWTH
,
ZETA FUNCTIONS OF GROUP AND RINGS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Sulca, Diego Armando; On the degree of polynomial subgroup growth of nilpotent groups; Springer; Mathematische Zeitschrift; 303; 1; 10-2022; 1-26
Compartir
Altmétricas