Mostrar el registro sencillo del ítem

dc.contributor.author
Amster, Pablo Gustavo  
dc.contributor.author
Kuna, Mariel Paula  
dc.date.available
2023-11-09T13:59:22Z  
dc.date.issued
2012-11  
dc.identifier.citation
Amster, Pablo Gustavo; Kuna, Mariel Paula; Range of semilinear operators for systems at resonance; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2012; 209; 11-2012; 1-13  
dc.identifier.issn
1072-6691  
dc.identifier.uri
http://hdl.handle.net/11336/217652  
dc.description.abstract
For a vector function u : R → RN we consider the system u 00(t) + ∇G(u(t)) = p(t) u(t) = u(t + T), where G : RN → R is a C1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S : H2 per → L2 ([0, T], RN ) given by Su = u 00 + ∇G(u), where H2 per = {u ∈ H2 ([0, T], R N ); u(0) − u(T) = u 0 (0) − u 0 (T) = 0}. Writing p(t) = p + pe(t), where p := 1 T R T 0 p(t) dt, we present several results concerning the topological structure of the set I(pe) = {p ∈ R N ; p + pe ∈ Im(S)}.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Texas State University. Department of Mathematics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
RESONANT SYSTEMS  
dc.subject
SEMILINEAR OPERATORS  
dc.subject
CRITICAL POINT THEORY  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Range of semilinear operators for systems at resonance  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-05-19T10:55:06Z  
dc.journal.volume
2012  
dc.journal.number
209  
dc.journal.pagination
1-13  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Marcos  
dc.description.fil
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.description.fil
Fil: Kuna, Mariel Paula. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.journal.title
Electronic Journal of Differential Equations  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ejde.math.txstate.edu/Volumes/2012/209/abstr.html