Artículo
Range of semilinear operators for systems at resonance
Fecha de publicación:
11/2012
Editorial:
Texas State University. Department of Mathematics
Revista:
Electronic Journal of Differential Equations
ISSN:
1072-6691
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For a vector function u : R → RN we consider the system u 00(t) + ∇G(u(t)) = p(t) u(t) = u(t + T), where G : RN → R is a C1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S : H2 per → L2 ([0, T], RN ) given by Su = u 00 + ∇G(u), where H2 per = {u ∈ H2 ([0, T], R N ); u(0) − u(T) = u 0 (0) − u 0 (T) = 0}. Writing p(t) = p + pe(t), where p := 1 T R T 0 p(t) dt, we present several results concerning the topological structure of the set I(pe) = {p ∈ R N ; p + pe ∈ Im(S)}.
Palabras clave:
RESONANT SYSTEMS
,
SEMILINEAR OPERATORS
,
CRITICAL POINT THEORY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Amster, Pablo Gustavo; Kuna, Mariel Paula; Range of semilinear operators for systems at resonance; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2012; 209; 11-2012; 1-13
Compartir