Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Modeling-on-demand-based multivariable control performance monitoring

Rodriguez del Portal, SairIcon ; Braccia, LautaroIcon ; Luppi, Patricio AlfredoIcon ; Zumoffen, David Alejandro RamonIcon
Fecha de publicación: 12/2022
Editorial: Pergamon-Elsevier Science Ltd
Revista: Computers and Chemical Engineering
ISSN: 0098-1354
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Sistemas de Automatización y Control

Resumen

The current work presents a modeling-on-demand-based multivariable control performance monitoring (CPM) strategy. The suggested approach addresses several challenging topics in multi input-multi output CPM area such as data-driven characteristics, recursive/adaptive philosophy, modeling, plant-wide control (PWC) performance/feasibility indicator, simple structure, minimum interference with the process operation and recovering actions suggestions. The new model-on-demand (MoD) algorithm combines partial least squares (block-wise and moving-window), model quality index, and the reference matrix concepts to improve the robustness characteristics of the recursive process, i.e. the model adaptation is only performed when it is needed. Recovery actions may involve changes on tuning parameters as well as control structure modifications. The proposed strategy allows to identify static and dynamic abnormal events in the process which could produce strong degradation of the PWC performance. The robustness of the proposed methodology is tested by dynamic simulations on the well-known Shell fractionator process and compared with some classical recursive algorithms.
Palabras clave: CONTROL PERFORMANCE MONITORING , MODEL-ON-DEMAND ALGORITHM , PLANT-WIDE CONTROL , RECURSIVE PARTIAL LEAST SQUARES
Ver el registro completo
 
Archivos asociados
Tamaño: 1.753Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/217320
URL: https://www.sciencedirect.com/science/article/pii/S0098135422003933
DOI: https://doi.org/10.1016/j.compchemeng.2022.108061
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Rodriguez del Portal, Sair; Braccia, Lautaro; Luppi, Patricio Alfredo; Zumoffen, David Alejandro Ramon; Modeling-on-demand-based multivariable control performance monitoring; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 168; 108061; 12-2022; 1-17
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES