Artículo
KDSource, a tool for the generation of Monte Carlo particle sources using kernel density estimation
Schmidt, N. S.; Abbate, O .I.; Prieto, Z. M.; Robledo, José Ignacio
; Márquez Damián, J. I.; Márquez, A. A.; Dawidowski, Javier
Fecha de publicación:
11/2022
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Annals of Nuclear Energy
ISSN:
0306-4549
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Monte Carlo radiation transport simulations have clearly contributed to improve the design of nuclear systems. When performing in-beam or shielding simulations a complexity arises due to the fact that particles must be tracked to regions far from the original source or behind the shielding, often lacking sufficient statistics. Different possibilities to overcome this problem such as using particle lists or generating synthetic sources have already been reported. In this work we present a new approach by using the adaptive multivariate kernel density estimator (KDE) method. This concept was implemented in KDSource, a general tool for modelling, optimizing and sampling KDE sources, which provides a convenient user interface. The basic properties of the method were studied in an analytical problem with a known density distribution. Furthermore, the tool was used in two Monte Carlo simulations that modelled neutron beams, which showed good agreement with experimental results.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Schmidt, N. S.; Abbate, O .I.; Prieto, Z. M.; Robledo, José Ignacio; Márquez Damián, J. I.; et al.; KDSource, a tool for the generation of Monte Carlo particle sources using kernel density estimation; Pergamon-Elsevier Science Ltd; Annals of Nuclear Energy; 177; 11-2022; 1-12
Compartir
Altmétricas