Mostrar el registro sencillo del ítem

dc.contributor.author
Hofer, Dominik  
dc.contributor.author
Schmidt Erfurth, Ursula  
dc.contributor.author
Orlando, José Ignacio  
dc.contributor.author
Goldbach, Felix  
dc.contributor.author
Gerendas, Bianca S.  
dc.contributor.author
Seeböck, Philipp  
dc.date.available
2023-10-27T18:31:35Z  
dc.date.issued
2022-04  
dc.identifier.citation
Hofer, Dominik; Schmidt Erfurth, Ursula; Orlando, José Ignacio; Goldbach, Felix; Gerendas, Bianca S.; et al.; Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures; Optica Publishing Group; Biomedical Optics Express; 13; 5; 4-2022; 2566-2580  
dc.identifier.issn
2156-7085  
dc.identifier.uri
http://hdl.handle.net/11336/216268  
dc.description.abstract
In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Optica Publishing Group  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Image quality  
dc.subject
Image resolution  
dc.subject
Image noise  
dc.subject
Laser scanning  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-10-26T15:22:03Z  
dc.journal.volume
13  
dc.journal.number
5  
dc.journal.pagination
2566-2580  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington D.C  
dc.description.fil
Fil: Hofer, Dominik. Medizinische Universität Wien; Austria  
dc.description.fil
Fil: Schmidt Erfurth, Ursula. Medizinische Universität Wien; Austria  
dc.description.fil
Fil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Medizinische Universität Wien; Austria  
dc.description.fil
Fil: Goldbach, Felix. Medizinische Universität Wien; Austria  
dc.description.fil
Fil: Gerendas, Bianca S.. Medizinische Universität Wien; Austria  
dc.description.fil
Fil: Seeböck, Philipp. Medizinische Universität Wien; Austria  
dc.journal.title
Biomedical Optics Express  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/boe/fulltext.cfm?uri=boe-13-5-2566&id=471027  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1364/BOE.452873