Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures

Hofer, Dominik; Schmidt Erfurth, Ursula; Orlando, José IgnacioIcon ; Goldbach, Felix; Gerendas, Bianca S.; Seeböck, Philipp
Fecha de publicación: 04/2022
Editorial: Optica Publishing Group
Revista: Biomedical Optics Express
ISSN: 2156-7085
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations.
Palabras clave: Image quality , Image resolution , Image noise , Laser scanning
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 7.092Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/216268
URL: https://opg.optica.org/boe/fulltext.cfm?uri=boe-13-5-2566&id=471027
DOI: http://dx.doi.org/10.1364/BOE.452873
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Hofer, Dominik; Schmidt Erfurth, Ursula; Orlando, José Ignacio; Goldbach, Felix; Gerendas, Bianca S.; et al.; Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures; Optica Publishing Group; Biomedical Optics Express; 13; 5; 4-2022; 2566-2580
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES