Mostrar el registro sencillo del ítem
dc.contributor.author
Bass, Ronald D.
dc.contributor.author
Garcia Garcia, Hector M.
dc.contributor.author
Sanz Sánchez, Jorge
dc.contributor.author
Ziemer, Paulo G. P.
dc.contributor.author
Bulant, Carlos Alberto
dc.contributor.author
Kuku, Kayode K.
dc.contributor.author
Kahsay, Yirga A.
dc.contributor.author
Beyene, Solomon
dc.contributor.author
Melaku, Gebremedhin
dc.contributor.author
Otsuka, Tatsuhiko
dc.contributor.author
Choi, JooHee
dc.contributor.author
Fernández Peregrina, Estefanía
dc.contributor.author
Erdogan, Emrah
dc.contributor.author
Gonzalo, Nieves
dc.contributor.author
Bourantas, Christos V.
dc.contributor.author
Blanco, Pablo Javier
dc.contributor.author
Räber, Lorenz
dc.date.available
2023-10-27T14:21:03Z
dc.date.issued
2022-07
dc.identifier.citation
Bass, Ronald D.; Garcia Garcia, Hector M.; Sanz Sánchez, Jorge; Ziemer, Paulo G. P.; Bulant, Carlos Alberto; et al.; Human vs. machine vs. core lab for the assessment of coronary atherosclerosis with lumen and vessel contour segmentation with intravascular ultrasound; Springer; International Journal Of Cardiovascular Imaging; 38; 7; 7-2022; 1431-1439
dc.identifier.issn
1569-5794
dc.identifier.uri
http://hdl.handle.net/11336/216207
dc.description.abstract
A machine learning (ML) algorithm for automatic segmentation of intravascular ultrasound was previously validated. It has the potential to improve efficiency, accuracy and precision of coronary vessel segmentation compared to manual segmentation by interventional cardiology experts. The aim of this study is to compare the performance of human readers to the machine and against the readings from a Core Laboratory. This is a post-hoc, cross-sectional analysis of the IBIS-4 study. Forty frames were randomly selected and analyzed by 10 readers of varying expertise two separate times, 1 week apart. Their measurements of lumen, vessel, plaque areas, and plaque burden were performed in an offline software. Among humans, the intra-observer variability was not statistically significant. For the total 80 frames, inter-observer variability between human readers, the ML algorithm and Core Laboratory for lumen area, vessel area, plaque area and plaque burden were not statistically different. For lumen area, however, relative differences between the human readers and the Core Lab ranged from 0.26 to 12.61%. For vessel area, they ranged from 1.25 to 9.54%. Efficiency between the ML algorithm and the readers differed notably. Humans spent 47 min on average to complete the analyses, while the ML algorithm took on average less than 1 min. The overall lumen, vessel and plaque means analyzed by humans and the proposed ML algorithm are similar to those of the Core Lab. Machines, however, are more time efficient. It is warranted to consider use of the ML algorithm in clinical practice.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL INTELLIGENCE
dc.subject
CORONARY ARTERY DISEASE
dc.subject
INTRAVASCULAR ULTRASOUND
dc.subject
MACHINE LEARNING
dc.subject.classification
Otras Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Human vs. machine vs. core lab for the assessment of coronary atherosclerosis with lumen and vessel contour segmentation with intravascular ultrasound
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-10-26T15:21:29Z
dc.journal.volume
38
dc.journal.number
7
dc.journal.pagination
1431-1439
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Bass, Ronald D.. University Of Georgetown; Estados Unidos
dc.description.fil
Fil: Garcia Garcia, Hector M.. MedStar Washington Hospital Center; Estados Unidos
dc.description.fil
Fil: Sanz Sánchez, Jorge. Hospital Universitari i Politecnic La Fe; España. Centro de Investigación en Red en Bioingeniería; España
dc.description.fil
Fil: Ziemer, Paulo G. P.. National Laboratory for Scientific Computing; Brasil
dc.description.fil
Fil: Bulant, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
dc.description.fil
Fil: Kuku, Kayode K.. MedStar Washington Hospital Center; Estados Unidos
dc.description.fil
Fil: Kahsay, Yirga A.. MedStar Washington Hospital Center; Estados Unidos
dc.description.fil
Fil: Beyene, Solomon. MedStar Washington Hospital Center; Estados Unidos
dc.description.fil
Fil: Melaku, Gebremedhin. MedStar Washington Hospital Center; Estados Unidos
dc.description.fil
Fil: Otsuka, Tatsuhiko. University of Bern; Suiza
dc.description.fil
Fil: Choi, JooHee. University Of Georgetown; Estados Unidos
dc.description.fil
Fil: Fernández Peregrina, Estefanía. MedStar Washington Hospital Center; Estados Unidos
dc.description.fil
Fil: Erdogan, Emrah. Barts Health NHS Trust; Reino Unido
dc.description.fil
Fil: Gonzalo, Nieves. Hospital Universitario Clínico San Carlos; España
dc.description.fil
Fil: Bourantas, Christos V.. Barts Health NHS Trust; Reino Unido. Queen Mary University of London; Reino Unido
dc.description.fil
Fil: Blanco, Pablo Javier. National Laboratory for Scientific Computing; Brasil
dc.description.fil
Fil: Räber, Lorenz. University of Bern; Suiza
dc.journal.title
International Journal Of Cardiovascular Imaging
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10554-022-02563-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10554-022-02563-6
Archivos asociados