Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Human vs. machine vs. core lab for the assessment of coronary atherosclerosis with lumen and vessel contour segmentation with intravascular ultrasound

Bass, Ronald D.; Garcia Garcia, Hector M.; Sanz Sánchez, Jorge; Ziemer, Paulo G. P.; Bulant, Carlos AlbertoIcon ; Kuku, Kayode K.; Kahsay, Yirga A.; Beyene, Solomon; Melaku, Gebremedhin; Otsuka, Tatsuhiko; Choi, JooHee; Fernández Peregrina, Estefanía; Erdogan, Emrah; Gonzalo, Nieves; Bourantas, Christos V.; Blanco, Pablo Javier; Räber, Lorenz
Fecha de publicación: 07/2022
Editorial: Springer
Revista: International Journal Of Cardiovascular Imaging
ISSN: 1569-5794
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Médica; Ciencias de la Información y Bioinformática

Resumen

A machine learning (ML) algorithm for automatic segmentation of intravascular ultrasound was previously validated. It has the potential to improve efficiency, accuracy and precision of coronary vessel segmentation compared to manual segmentation by interventional cardiology experts. The aim of this study is to compare the performance of human readers to the machine and against the readings from a Core Laboratory. This is a post-hoc, cross-sectional analysis of the IBIS-4 study. Forty frames were randomly selected and analyzed by 10 readers of varying expertise two separate times, 1 week apart. Their measurements of lumen, vessel, plaque areas, and plaque burden were performed in an offline software. Among humans, the intra-observer variability was not statistically significant. For the total 80 frames, inter-observer variability between human readers, the ML algorithm and Core Laboratory for lumen area, vessel area, plaque area and plaque burden were not statistically different. For lumen area, however, relative differences between the human readers and the Core Lab ranged from 0.26 to 12.61%. For vessel area, they ranged from 1.25 to 9.54%. Efficiency between the ML algorithm and the readers differed notably. Humans spent 47 min on average to complete the analyses, while the ML algorithm took on average less than 1 min. The overall lumen, vessel and plaque means analyzed by humans and the proposed ML algorithm are similar to those of the Core Lab. Machines, however, are more time efficient. It is warranted to consider use of the ML algorithm in clinical practice.
Palabras clave: ARTIFICIAL INTELLIGENCE , CORONARY ARTERY DISEASE , INTRAVASCULAR ULTRASOUND , MACHINE LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 992.8Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/216207
URL: https://link.springer.com/article/10.1007/s10554-022-02563-6
DOI: http://dx.doi.org/10.1007/s10554-022-02563-6
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Bass, Ronald D.; Garcia Garcia, Hector M.; Sanz Sánchez, Jorge; Ziemer, Paulo G. P.; Bulant, Carlos Alberto; et al.; Human vs. machine vs. core lab for the assessment of coronary atherosclerosis with lumen and vessel contour segmentation with intravascular ultrasound; Springer; International Journal Of Cardiovascular Imaging; 38; 7; 7-2022; 1431-1439
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES