Artículo
Discretization of gene expression data revised
Gallo, Cristian Andrés
; Cecchini, Rocío Luján
; Carballido, Jessica Andrea
; Micheletto, Sandra; Ponzoni, Ignacio
Fecha de publicación:
09/2015
Editorial:
Oxford University Press
Revista:
Briefings In Bioinformatics
ISSN:
1467-5463
e-ISSN:
1477-4054
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Gene expression measurements represent the most important source of biological data used to unveil theinteraction and functionality of genes. In this regard, several data mining and machine learning algorithms havebeen proposed that require, in a number of cases, some kind of data discretization in order to perform theinference. Selection of an appropriate discretization process has a major impact on the design and outcome of theinference algorithms, since there are a number of relevant issues that need to be considered. This study presents arevision of the current state of the art discretization techniques, together with the key subjects that need to beconsidered when designing or selecting a discretization approach for gene expression data.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(CERZOS)
Articulos de CENTRO REC.NAT.RENOVABLES DE ZONA SEMIARIDA(I)
Articulos de CENTRO REC.NAT.RENOVABLES DE ZONA SEMIARIDA(I)
Citación
Gallo, Cristian Andrés; Cecchini, Rocío Luján; Carballido, Jessica Andrea; Micheletto, Sandra; Ponzoni, Ignacio; Discretization of gene expression data revised; Oxford University Press; Briefings In Bioinformatics; 17; 5; 9-2015; 758-770
Compartir
Altmétricas