Mostrar el registro sencillo del ítem

dc.contributor.author
Maas, Martín Daniel  
dc.contributor.author
Salvia, Maria Mercedes  
dc.contributor.author
Spennemann, Pablo Cristian  
dc.contributor.author
Fernández Long, María Elena  
dc.date.available
2023-10-26T12:06:04Z  
dc.date.issued
2022-05  
dc.identifier.citation
Maas, Martín Daniel; Salvia, Maria Mercedes; Spennemann, Pablo Cristian; Fernández Long, María Elena; Robust Multisensor Prediction of Drought-Induced Yield Anomalies of Soybeans in Argentina; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 19; 5-2022; 1-1  
dc.identifier.issn
1545-598X  
dc.identifier.uri
http://hdl.handle.net/11336/216021  
dc.description.abstract
A multisensor method for the prediction of drought-induced agricultural impact is put forth in this letter. The input data considered include MODIS NDVI and land surface temperature (LST), ESA-CCI Soil Moisture, and CHIRPS rain data, which are processed at the department level in a large and sparsely monitored cropland in Argentina. As ground truth, we have used department-scale crop losses estimated by an annual agricultural census. In particular, the period under consideration (2001-2019) includes five severe drought events where soybean production in the area was considerably affected. The proposed method is based on Lasso regression of the corresponding rank values of the satellite data to the relative yield anomalies. Importantly, the proposed methodology is robust to extreme drought events. In addition, an associated early warning classification method results in an overall accuracy no worse than 70% up to one month before the harvest, and 62% two months before the harvest. The proposed methodology offers a valuable method for the prediction of agricultural drought impact and should be especially valuable in sparsely monitored regions of the world.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GEOSPATIAL ANALYSIS  
dc.subject
LAND SURFACE  
dc.subject
SOIL MOISTURE (SM)  
dc.subject.classification
Oceanografía, Hidrología, Recursos Hídricos  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust Multisensor Prediction of Drought-Induced Yield Anomalies of Soybeans in Argentina  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-10-25T12:52:06Z  
dc.journal.volume
19  
dc.journal.pagination
1-1  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Maas, Martín Daniel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.description.fil
Fil: Salvia, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.description.fil
Fil: Spennemann, Pablo Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina  
dc.description.fil
Fil: Fernández Long, María Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.journal.title
Ieee Geoscience and Remote Sensing Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9770421/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/LGRS.2022.3171415