Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Robust Multisensor Prediction of Drought-Induced Yield Anomalies of Soybeans in Argentina

Maas, Martín DanielIcon ; Salvia, Maria MercedesIcon ; Spennemann, Pablo CristianIcon ; Fernández Long, María Elena
Fecha de publicación: 05/2022
Editorial: Institute of Electrical and Electronics Engineers
Revista: Ieee Geoscience and Remote Sensing Letters
ISSN: 1545-598X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Oceanografía, Hidrología, Recursos Hídricos

Resumen

A multisensor method for the prediction of drought-induced agricultural impact is put forth in this letter. The input data considered include MODIS NDVI and land surface temperature (LST), ESA-CCI Soil Moisture, and CHIRPS rain data, which are processed at the department level in a large and sparsely monitored cropland in Argentina. As ground truth, we have used department-scale crop losses estimated by an annual agricultural census. In particular, the period under consideration (2001-2019) includes five severe drought events where soybean production in the area was considerably affected. The proposed method is based on Lasso regression of the corresponding rank values of the satellite data to the relative yield anomalies. Importantly, the proposed methodology is robust to extreme drought events. In addition, an associated early warning classification method results in an overall accuracy no worse than 70% up to one month before the harvest, and 62% two months before the harvest. The proposed methodology offers a valuable method for the prediction of agricultural drought impact and should be especially valuable in sparsely monitored regions of the world.
Palabras clave: GEOSPATIAL ANALYSIS , LAND SURFACE , SOIL MOISTURE (SM)
Ver el registro completo
 
Archivos asociados
Tamaño: 449.3Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/216021
URL: https://ieeexplore.ieee.org/document/9770421/
DOI: http://dx.doi.org/10.1109/LGRS.2022.3171415
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Maas, Martín Daniel; Salvia, Maria Mercedes; Spennemann, Pablo Cristian; Fernández Long, María Elena; Robust Multisensor Prediction of Drought-Induced Yield Anomalies of Soybeans in Argentina; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 19; 5-2022; 1-1
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES