Mostrar el registro sencillo del ítem
dc.contributor.author
Berra, Fabio Martín
dc.date.available
2023-10-23T18:03:35Z
dc.date.issued
2022-05
dc.identifier.citation
Berra, Fabio Martín; Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions; Springer Heidelberg; Czechoslovak Mathematical Journal; 72; 4; 5-2022; 1003-1017
dc.identifier.issn
0011-4642
dc.identifier.uri
http://hdl.handle.net/11336/215705
dc.description.abstract
We give a quantitative characterization of the pairs of weights (w, v) for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak (p, p) type inequality for 1 ⩽ p < ∞. More precisely, given any measurable set E0, the estimatew({x∈ℝn:M+,d(XE0)(x)>t})⩽C[(w,v)]Ap+,d(ℛ)ptpv(E0) holds if and only if the pair (w,v) belongs to Ap+,d(ℛ), that is,|E||Q|⩽[(w,v)]Ap+,d(ℛ)(v(E)w(Q))1/p for every dyadic cube Q and every measurable set E ⊂ Q+. The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the non-dyadic case in ℝ2 by following the main ideas in L. Forzani, F. J. Martín-Reyes, S. Ombrosi (2011).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Heidelberg
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
28B99
dc.subject
42B25
dc.subject
ONE-SIDED MAXIMAL OPERATOR
dc.subject
RESTRICTED WEAK TYPE
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-10-19T14:34:09Z
dc.journal.volume
72
dc.journal.number
4
dc.journal.pagination
1003-1017
dc.journal.pais
Alemania
dc.description.fil
Fil: Berra, Fabio Martín. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.journal.title
Czechoslovak Mathematical Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.21136/CMJ.2022.0296-21
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.21136/CMJ.2022.0296-21
Archivos asociados