Artículo
Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions
Fecha de publicación:
05/2022
Editorial:
Springer Heidelberg
Revista:
Czechoslovak Mathematical Journal
ISSN:
0011-4642
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We give a quantitative characterization of the pairs of weights (w, v) for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak (p, p) type inequality for 1 ⩽ p < ∞. More precisely, given any measurable set E0, the estimatew({x∈ℝn:M+,d(XE0)(x)>t})⩽C[(w,v)]Ap+,d(ℛ)ptpv(E0) holds if and only if the pair (w,v) belongs to Ap+,d(ℛ), that is,|E||Q|⩽[(w,v)]Ap+,d(ℛ)(v(E)w(Q))1/p for every dyadic cube Q and every measurable set E ⊂ Q+. The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the non-dyadic case in ℝ2 by following the main ideas in L. Forzani, F. J. Martín-Reyes, S. Ombrosi (2011).
Palabras clave:
28B99
,
42B25
,
ONE-SIDED MAXIMAL OPERATOR
,
RESTRICTED WEAK TYPE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Berra, Fabio Martín; Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions; Springer Heidelberg; Czechoslovak Mathematical Journal; 72; 4; 5-2022; 1003-1017
Compartir
Altmétricas