Mostrar el registro sencillo del ítem

dc.contributor.author
Samarakoon, Anjana  
dc.contributor.author
Tennant, D. Alan  
dc.contributor.author
Ye, Feng  
dc.contributor.author
Zhang, Qiang  
dc.contributor.author
Grigera, Santiago Andrés  
dc.date.available
2023-10-18T15:06:55Z  
dc.date.issued
2022-11  
dc.identifier.citation
Samarakoon, Anjana; Tennant, D. Alan; Ye, Feng; Zhang, Qiang; Grigera, Santiago Andrés; Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure; Springer; Communications Materials; 3; 1; 11-2022; 1-11  
dc.identifier.issn
2662-4443  
dc.identifier.uri
http://hdl.handle.net/11336/215364  
dc.description.abstract
Quantum materials research requires co-design of theory with experiments and involves demanding simulations and the analysis of vast quantities of data, usually including pattern recognition and clustering. Artificial intelligence is a natural route to optimise these processes and bring theory and experiments together. Here, we propose a scheme that integrates machine learning with high-performance simulations and scattering measurements, covering the pipeline of typical neutron experiments. Our approach uses nonlinear autoencoders trained on realistic simulations along with a fast surrogate for the calculation of scattering in the form of a generative model. We demonstrate this approach in a highly frustrated magnet, Dy2Ti2O7, using machine learning predictions to guide the neutron scattering experiment under hydrostatic pressure, extract material parameters and construct a phase diagram. Our scheme provides a comprehensive set of capabilities that allows direct integration of theory along with automated data processing and provides on a rapid timescale direct insight into a challenging condensed matter system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Machine learning  
dc.subject
Frustrated systems  
dc.subject
Neutron scattering  
dc.subject
Magnetic materials  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-06-29T10:28:44Z  
dc.journal.volume
3  
dc.journal.number
1  
dc.journal.pagination
1-11  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Samarakoon, Anjana. Oak Ridge National Laboratory; Estados Unidos. Argonne National Laboratory; Estados Unidos  
dc.description.fil
Fil: Tennant, D. Alan. Oak Ridge National Laboratory; Estados Unidos  
dc.description.fil
Fil: Ye, Feng. Oak Ridge National Laboratory; Estados Unidos  
dc.description.fil
Fil: Zhang, Qiang. Oak Ridge National Laboratory; Estados Unidos  
dc.description.fil
Fil: Grigera, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.journal.title
Communications Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s43246-022-00306-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1038/s43246-022-00306-7