Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure

Samarakoon, Anjana; Tennant, D. Alan; Ye, Feng; Zhang, Qiang; Grigera, Santiago AndrésIcon
Fecha de publicación: 11/2022
Editorial: Springer
Revista: Communications Materials
ISSN: 2662-4443
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

Quantum materials research requires co-design of theory with experiments and involves demanding simulations and the analysis of vast quantities of data, usually including pattern recognition and clustering. Artificial intelligence is a natural route to optimise these processes and bring theory and experiments together. Here, we propose a scheme that integrates machine learning with high-performance simulations and scattering measurements, covering the pipeline of typical neutron experiments. Our approach uses nonlinear autoencoders trained on realistic simulations along with a fast surrogate for the calculation of scattering in the form of a generative model. We demonstrate this approach in a highly frustrated magnet, Dy2Ti2O7, using machine learning predictions to guide the neutron scattering experiment under hydrostatic pressure, extract material parameters and construct a phase diagram. Our scheme provides a comprehensive set of capabilities that allows direct integration of theory along with automated data processing and provides on a rapid timescale direct insight into a challenging condensed matter system.
Palabras clave: Machine learning , Frustrated systems , Neutron scattering , Magnetic materials
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.097Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/215364
URL: https://www.nature.com/articles/s43246-022-00306-7
DOI: https://doi.org/10.1038/s43246-022-00306-7
Colecciones
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Samarakoon, Anjana; Tennant, D. Alan; Ye, Feng; Zhang, Qiang; Grigera, Santiago Andrés; Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure; Springer; Communications Materials; 3; 1; 11-2022; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES