Mostrar el registro sencillo del ítem
dc.contributor.author
Wang, Siyuan
dc.contributor.author
Emmons, Louisa K.
dc.contributor.author
Tilmes, Simone
dc.contributor.author
Kinnison, Douglas E.
dc.contributor.author
Long, Mateo C.
dc.contributor.author
Lamarque, Jean Francoise
dc.contributor.author
Apel, Eric C.
dc.contributor.author
Hornbrook, Rebecca S.
dc.contributor.author
Montzka, Stephen
dc.contributor.author
Saiz López, Alfonso
dc.contributor.author
Fernandez, Rafael Pedro
dc.date.available
2023-10-17T13:23:54Z
dc.date.issued
2019
dc.identifier.citation
An online air-sea exchange model framework for trace gases powered by machine- learning; American Geophysical Union Fall Meeting; San Francisco; Estados Unidos; 2019; 1-1
dc.identifier.uri
http://hdl.handle.net/11336/215122
dc.description.abstract
The ocean emits a wide range of trace gases, such as volatile organic compounds, or sulfur-,nitrogen-, and halogen-containing compounds. Many of these gases play critical roles in the atmosphere, including aerosol and cloud formation, tropospheric and stratospheric ozone budget, as well as the self-cleaning capacity of the atmosphere. Most chemistry-climate models use prescribed oceanic emissions (often derived from observations). These prescribed (offline) emissions generally do not respond to changes in local conditions. A process-level representation of the bi-directional oceanic emissions of trace gases remains challenging, mainly because the ocean biogeochemical<br />processes controlling the natural synthesis of these compounds in the seawater remain poorly understood. We present a new online air-sea exchange framework for the NCAR CESM2, with an observationally trained machine-learning emulator to couple the ocean biogeochemistry with the air-sea exchange. This machine-learning based approach so far has been tested for a number of important trace gases, including dimethyl sulfide (DMS), acetone, bromoform (CHBr 3 ), and dibromomethane (CH 2 Br 2 ), and the preliminary results are evaluated with observations around the globe. This new model framework is more skillful than the widely used top-down approaches for representing the seasonal/spatial variations and the annual means of atmospheric concentrations. The new approach improves the model predictability for the coupled earth system model, and can be used as a basis for investigating the future ocean emissions and feedbacks under climate change.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Geophysical Union
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SEA-AIR EXCHANGE
dc.subject
VSL HALOGENS
dc.subject
CAM-CHEM
dc.subject
MACHINE LEARNING
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
An online air-sea exchange model framework for trace gases powered by machine- learning
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-12-05T16:53:13Z
dc.journal.pagination
1-1
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington D.C
dc.description.fil
Fil: Wang, Siyuan. National Center for Atmospheric Research; Estados Unidos
dc.description.fil
Fil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados Unidos
dc.description.fil
Fil: Tilmes, Simone. National Center for Atmospheric Research; Estados Unidos
dc.description.fil
Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos
dc.description.fil
Fil: Long, Mateo C.. National Center for Atmospheric Research; Estados Unidos
dc.description.fil
Fil: Lamarque, Jean Francoise. National Center for Atmospheric Research; Estados Unidos
dc.description.fil
Fil: Apel, Eric C.. National Oceanic & Atmospheric Administration, Esrl; Estados Unidos
dc.description.fil
Fil: Hornbrook, Rebecca S.. Centro Nacional de Investigación Atmosférica; Estados Unidos
dc.description.fil
Fil: Montzka, Stephen. National Ocean And Atmospheric Administration; Estados Unidos
dc.description.fil
Fil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; España
dc.description.fil
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/510957
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Reunión
dc.description.nombreEvento
American Geophysical Union Fall Meeting
dc.date.evento
2019-12-09
dc.description.ciudadEvento
San Francisco
dc.description.paisEvento
Estados Unidos
dc.type.publicacion
Book
dc.description.institucionOrganizadora
American Geophysical Union
dc.source.libro
Abstracts of the American Geophysical Union Fall Meeting
dc.date.eventoHasta
2019-12-13
dc.type
Reunión
Archivos asociados