Mostrar el registro sencillo del ítem

dc.contributor.author
Wang, Siyuan  
dc.contributor.author
Emmons, Louisa K.  
dc.contributor.author
Tilmes, Simone  
dc.contributor.author
Kinnison, Douglas E.  
dc.contributor.author
Long, Mateo C.  
dc.contributor.author
Lamarque, Jean Francoise  
dc.contributor.author
Apel, Eric C.  
dc.contributor.author
Hornbrook, Rebecca S.  
dc.contributor.author
Montzka, Stephen  
dc.contributor.author
Saiz López, Alfonso  
dc.contributor.author
Fernandez, Rafael Pedro  
dc.date.available
2023-10-17T13:23:54Z  
dc.date.issued
2019  
dc.identifier.citation
An online air-sea exchange model framework for trace gases powered by machine- learning; American Geophysical Union Fall Meeting; San Francisco; Estados Unidos; 2019; 1-1  
dc.identifier.uri
http://hdl.handle.net/11336/215122  
dc.description.abstract
The ocean emits a wide range of trace gases, such as volatile organic compounds, or sulfur-,nitrogen-, and halogen-containing compounds. Many of these gases play critical roles in the atmosphere, including aerosol and cloud formation, tropospheric and stratospheric ozone budget, as well as the self-cleaning capacity of the atmosphere. Most chemistry-climate models use prescribed oceanic emissions (often derived from observations). These prescribed (offline) emissions generally do not respond to changes in local conditions. A process-level representation of the bi-directional oceanic emissions of trace gases remains challenging, mainly because the ocean biogeochemical<br />processes controlling the natural synthesis of these compounds in the seawater remain poorly understood. We present a new online air-sea exchange framework for the NCAR CESM2, with an observationally trained machine-learning emulator to couple the ocean biogeochemistry with the air-sea exchange. This machine-learning based approach so far has been tested for a number of important trace gases, including dimethyl sulfide (DMS), acetone, bromoform (CHBr 3 ), and dibromomethane (CH 2 Br 2 ), and the preliminary results are evaluated with observations around the globe. This new model framework is more skillful than the widely used top-down approaches for representing the seasonal/spatial variations and the annual means of atmospheric concentrations. The new approach improves the model predictability for the coupled earth system model, and can be used as a basis for investigating the future ocean emissions and feedbacks under climate change.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Geophysical Union  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SEA-AIR EXCHANGE  
dc.subject
VSL HALOGENS  
dc.subject
CAM-CHEM  
dc.subject
MACHINE LEARNING  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An online air-sea exchange model framework for trace gases powered by machine- learning  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-12-05T16:53:13Z  
dc.journal.pagination
1-1  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington D.C  
dc.description.fil
Fil: Wang, Siyuan. National Center for Atmospheric Research; Estados Unidos  
dc.description.fil
Fil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados Unidos  
dc.description.fil
Fil: Tilmes, Simone. National Center for Atmospheric Research; Estados Unidos  
dc.description.fil
Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos  
dc.description.fil
Fil: Long, Mateo C.. National Center for Atmospheric Research; Estados Unidos  
dc.description.fil
Fil: Lamarque, Jean Francoise. National Center for Atmospheric Research; Estados Unidos  
dc.description.fil
Fil: Apel, Eric C.. National Oceanic & Atmospheric Administration, Esrl; Estados Unidos  
dc.description.fil
Fil: Hornbrook, Rebecca S.. Centro Nacional de Investigación Atmosférica; Estados Unidos  
dc.description.fil
Fil: Montzka, Stephen. National Ocean And Atmospheric Administration; Estados Unidos  
dc.description.fil
Fil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; España  
dc.description.fil
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/510957  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Reunión  
dc.description.nombreEvento
American Geophysical Union Fall Meeting  
dc.date.evento
2019-12-09  
dc.description.ciudadEvento
San Francisco  
dc.description.paisEvento
Estados Unidos  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
American Geophysical Union  
dc.source.libro
Abstracts of the American Geophysical Union Fall Meeting  
dc.date.eventoHasta
2019-12-13  
dc.type
Reunión