Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

An online air-sea exchange model framework for trace gases powered by machine- learning

Wang, Siyuan; Emmons, Louisa K.; Tilmes, Simone; Kinnison, Douglas E.; Long, Mateo C.; Lamarque, Jean Francoise; Apel, Eric C.; Hornbrook, Rebecca S.; Montzka, Stephen; Saiz López, Alfonso; Fernandez, Rafael PedroIcon
Tipo del evento: Reunión
Nombre del evento: American Geophysical Union Fall Meeting
Fecha del evento: 09/12/2019
Institución Organizadora: American Geophysical Union;
Título del Libro: Abstracts of the American Geophysical Union Fall Meeting
Editorial: American Geophysical Union
Idioma: Inglés
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

The ocean emits a wide range of trace gases, such as volatile organic compounds, or sulfur-,nitrogen-, and halogen-containing compounds. Many of these gases play critical roles in the atmosphere, including aerosol and cloud formation, tropospheric and stratospheric ozone budget, as well as the self-cleaning capacity of the atmosphere. Most chemistry-climate models use prescribed oceanic emissions (often derived from observations). These prescribed (offline) emissions generally do not respond to changes in local conditions. A process-level representation of the bi-directional oceanic emissions of trace gases remains challenging, mainly because the ocean biogeochemical<br />processes controlling the natural synthesis of these compounds in the seawater remain poorly understood. We present a new online air-sea exchange framework for the NCAR CESM2, with an observationally trained machine-learning emulator to couple the ocean biogeochemistry with the air-sea exchange. This machine-learning based approach so far has been tested for a number of important trace gases, including dimethyl sulfide (DMS), acetone, bromoform (CHBr 3 ), and dibromomethane (CH 2 Br 2 ), and the preliminary results are evaluated with observations around the globe. This new model framework is more skillful than the widely used top-down approaches for representing the seasonal/spatial variations and the annual means of atmospheric concentrations. The new approach improves the model predictability for the coupled earth system model, and can be used as a basis for investigating the future ocean emissions and feedbacks under climate change.
Palabras clave: SEA-AIR EXCHANGE , VSL HALOGENS , CAM-CHEM , MACHINE LEARNING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 40.43Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/215122
URL: https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/510957
Colecciones
Eventos(CCT - MENDOZA)
Eventos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Eventos(ICB)
Eventos de INSTITUTO INTERDISCIPLINARIO DE CIENCIAS BASICAS
Citación
An online air-sea exchange model framework for trace gases powered by machine- learning; American Geophysical Union Fall Meeting; San Francisco; Estados Unidos; 2019; 1-1
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES