Artículo
Strictly systolic angled complexes and hyperbolicity of one-relator groups
Fecha de publicación:
08/2022
Editorial:
Mathematical Sciences Publishers
Revista:
Algebraic and Geometric Topology
ISSN:
1472-2747
e-ISSN:
1472-2739
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We introduce the notion of strictly systolic angled complexes. They generalize Januszkiewicz and Świątkowski’s 7 –systolic simplicial complexes and also their metric counterparts, which appear as natural analogues to Huang and Osajda’s metrically systolic simplicial complexes in the context of negative curvature. We prove that strictly systolic angled complexes and the groups that act on them geometrically, together with their finitely presented subgroups, are hyperbolic. We use these complexes to study the geometry of one-relator groups without torsion, and prove hyperbolicity of such groups under a metric small cancellation hypothesis, weaker than C ' ( 1 6 ) and C ' ( 1 4 ) − T ( 4 ) .
Palabras clave:
HYPERBOLICITY
,
SYSTOLICITY
,
ANGLES
,
ONERELATORS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Blufstein, Martín Axel; Minian, Elias Gabriel; Strictly systolic angled complexes and hyperbolicity of one-relator groups; Mathematical Sciences Publishers; Algebraic and Geometric Topology; 22; 3; 8-2022; 1159-1175
Compartir
Altmétricas