Mostrar el registro sencillo del ítem
dc.contributor.author
Macas Ordóñez, Beatriz del Cisne

dc.contributor.author
Garrigós, Javier
dc.contributor.author
Martínez, José Javier
dc.contributor.author
Ferrández, José Manuel
dc.contributor.author
Bonomini, Maria Paula

dc.date.available
2023-10-04T09:40:48Z
dc.date.issued
2023-08
dc.identifier.citation
Macas Ordóñez, Beatriz del Cisne; Garrigós, Javier; Martínez, José Javier; Ferrández, José Manuel; Bonomini, Maria Paula; An explainable machine learning system for left bundle branch block detection and classification; IOS Press; Integrated Computer-aided Engineering; 8-2023; 1-16
dc.identifier.issn
1069-2509
dc.identifier.uri
http://hdl.handle.net/11336/214012
dc.description.abstract
Left bundle branch block is a cardiac conduction disorder that occurs when the electrical impulses that control theheartbeat are blocked or delayed as they travel through the left bundle branch of the cardiac conduction system providing acharacteristic electrocardiogram (ECG) pattern. We use a reduced set of biologically inspired features extracted from ECG data is proposed and used to train a variety of machine learning models for the LBBB classification task. Then, different methods are used to evaluate the importance of the features in the classification process of each model and to further reduce the feature set while maintaining the classification performance of the models. The performances obtained by the models using different metrics improve those obtained by other authors in the literature on the same dataset. Finally, XAI techniques are used to verify that the predictions made by the models are consistent with the existing relationships between the data. This increases the reliability of the models and their usefulness in the diagnostic support process. These explanations can help clinicians to better understand the reasoning behind diagnostic decisions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOS Press

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
LBBB DIAGNOSIS
dc.subject
CARDIAC RESYNCHRONIZATION THERAPY OUTCOME
dc.subject
SPATIAL VARIANCE
dc.subject
CORRELATION ANALYSIS
dc.subject.classification
Ingeniería Médica

dc.subject.classification
Ingeniería Médica

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
An explainable machine learning system for left bundle branch block detection and classification
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-09-25T14:32:25Z
dc.journal.pagination
1-16
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Macas Ordóñez, Beatriz del Cisne. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Garrigós, Javier. Universidad Politécnica de Cartagena; España
dc.description.fil
Fil: Martínez, José Javier. Universidad Politécnica de Cartagena; España
dc.description.fil
Fil: Ferrández, José Manuel. Universidad Politécnica de Cartagena; España
dc.description.fil
Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Integrated Computer-aided Engineering

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/ICA-230719
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3233/ICA-230719
Archivos asociados