Mostrar el registro sencillo del ítem

dc.contributor.author
Macas Ordóñez, Beatriz del Cisne  
dc.contributor.author
Garrigós, Javier  
dc.contributor.author
Martínez, José Javier  
dc.contributor.author
Ferrández, José Manuel  
dc.contributor.author
Bonomini, Maria Paula  
dc.date.available
2023-10-04T09:40:48Z  
dc.date.issued
2023-08  
dc.identifier.citation
Macas Ordóñez, Beatriz del Cisne; Garrigós, Javier; Martínez, José Javier; Ferrández, José Manuel; Bonomini, Maria Paula; An explainable machine learning system for left bundle branch block detection and classification; IOS Press; Integrated Computer-aided Engineering; 8-2023; 1-16  
dc.identifier.issn
1069-2509  
dc.identifier.uri
http://hdl.handle.net/11336/214012  
dc.description.abstract
Left bundle branch block is a cardiac conduction disorder that occurs when the electrical impulses that control theheartbeat are blocked or delayed as they travel through the left bundle branch of the cardiac conduction system providing acharacteristic electrocardiogram (ECG) pattern. We use a reduced set of biologically inspired features extracted from ECG data is proposed and used to train a variety of machine learning models for the LBBB classification task. Then, different methods are used to evaluate the importance of the features in the classification process of each model and to further reduce the feature set while maintaining the classification performance of the models. The performances obtained by the models using different metrics improve those obtained by other authors in the literature on the same dataset. Finally, XAI techniques are used to verify that the predictions made by the models are consistent with the existing relationships between the data. This increases the reliability of the models and their usefulness in the diagnostic support process. These explanations can help clinicians to better understand the reasoning behind diagnostic decisions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOS Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LBBB DIAGNOSIS  
dc.subject
CARDIAC RESYNCHRONIZATION THERAPY OUTCOME  
dc.subject
SPATIAL VARIANCE  
dc.subject
CORRELATION ANALYSIS  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
An explainable machine learning system for left bundle branch block detection and classification  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-09-25T14:32:25Z  
dc.journal.pagination
1-16  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Macas Ordóñez, Beatriz del Cisne. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Garrigós, Javier. Universidad Politécnica de Cartagena; España  
dc.description.fil
Fil: Martínez, José Javier. Universidad Politécnica de Cartagena; España  
dc.description.fil
Fil: Ferrández, José Manuel. Universidad Politécnica de Cartagena; España  
dc.description.fil
Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Integrated Computer-aided Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/ICA-230719  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3233/ICA-230719