Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An explainable machine learning system for left bundle branch block detection and classification

Macas Ordóñez, Beatriz del CisneIcon ; Garrigós, Javier; Martínez, José Javier; Ferrández, José Manuel; Bonomini, Maria PaulaIcon
Fecha de publicación: 08/2023
Editorial: IOS Press
Revista: Integrated Computer-aided Engineering
ISSN: 1069-2509
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Médica

Resumen

Left bundle branch block is a cardiac conduction disorder that occurs when the electrical impulses that control theheartbeat are blocked or delayed as they travel through the left bundle branch of the cardiac conduction system providing acharacteristic electrocardiogram (ECG) pattern. We use a reduced set of biologically inspired features extracted from ECG data is proposed and used to train a variety of machine learning models for the LBBB classification task. Then, different methods are used to evaluate the importance of the features in the classification process of each model and to further reduce the feature set while maintaining the classification performance of the models. The performances obtained by the models using different metrics improve those obtained by other authors in the literature on the same dataset. Finally, XAI techniques are used to verify that the predictions made by the models are consistent with the existing relationships between the data. This increases the reliability of the models and their usefulness in the diagnostic support process. These explanations can help clinicians to better understand the reasoning behind diagnostic decisions.
Palabras clave: LBBB DIAGNOSIS , CARDIAC RESYNCHRONIZATION THERAPY OUTCOME , SPATIAL VARIANCE , CORRELATION ANALYSIS
Ver el registro completo
 
Archivos asociados
Tamaño: 7.890Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/214012
URL: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/ICA-23071
DOI: http://dx.doi.org/10.3233/ICA-230719
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Macas Ordóñez, Beatriz del Cisne; Garrigós, Javier; Martínez, José Javier; Ferrández, José Manuel; Bonomini, Maria Paula; An explainable machine learning system for left bundle branch block detection and classification; IOS Press; Integrated Computer-aided Engineering; 8-2023; 1-16
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES