Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Imposing exclusion limits on new physics with machine-learned likelihoods

Arganda Carreras, ErnestoIcon ; de Los Rios, Martín EmilioIcon ; Perez, Andres DanielIcon ; Sandá Seoane, Rosa MaríaIcon
Fecha de publicación: 10/2022
Editorial: Sissa
Revista: Proceedings of Science
ISSN: 1824-8039
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de Partículas y Campos

Resumen

Machine-Learned Likelihood (MLL) is a method that, by combining modern machine-learning techniques with likelihood-based inference tests, allows estimating the experimental sensitivity of high-dimensional data sets. Here we extend the MLL method by including the exclusion hypothesis tests and study it first on a toy model of multivariate Gaussian distributions, where the true probability distribution functions are known. We then apply it to a case of interest in the search for new physics at the LHC, in which a ′ boson decays into lepton pairs, comparing the performance of MLL for estimating 95% CL exclusion limits with respect to the prospects reported by ATLAS at 14 TeV with a luminosity of 3 ab−1.
Palabras clave: BSM PHENOMENOLOGY , COLLIDER PHYSICS , LHC , MACHINE LEARNING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 395.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/213847
DOI: https://doi.org/10.22323/1.414.1226
URL: https://pos.sissa.it/414/1226/pdf
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
Arganda Carreras, Ernesto; de Los Rios, Martín Emilio; Perez, Andres Daniel; Sandá Seoane, Rosa María; Imposing exclusion limits on new physics with machine-learned likelihoods; Sissa; Proceedings of Science; 2022; 10-2022; 1226-1232
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES