Artículo
Imposing exclusion limits on new physics with machine-learned likelihoods
Arganda Carreras, Ernesto
; de Los Rios, Martín Emilio
; Perez, Andres Daniel
; Sandá Seoane, Rosa María
Fecha de publicación:
10/2022
Editorial:
Sissa
Revista:
Proceedings of Science
ISSN:
1824-8039
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Machine-Learned Likelihood (MLL) is a method that, by combining modern machine-learning techniques with likelihood-based inference tests, allows estimating the experimental sensitivity of high-dimensional data sets. Here we extend the MLL method by including the exclusion hypothesis tests and study it first on a toy model of multivariate Gaussian distributions, where the true probability distribution functions are known. We then apply it to a case of interest in the search for new physics at the LHC, in which a ′ boson decays into lepton pairs, comparing the performance of MLL for estimating 95% CL exclusion limits with respect to the prospects reported by ATLAS at 14 TeV with a luminosity of 3 ab−1.
Palabras clave:
BSM PHENOMENOLOGY
,
COLLIDER PHYSICS
,
LHC
,
MACHINE LEARNING
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Arganda Carreras, Ernesto; de Los Rios, Martín Emilio; Perez, Andres Daniel; Sandá Seoane, Rosa María; Imposing exclusion limits on new physics with machine-learned likelihoods; Sissa; Proceedings of Science; 2022; 10-2022; 1226-1232
Compartir
Altmétricas