Mostrar el registro sencillo del ítem

dc.contributor.author
D'Andrea, Carlos  
dc.contributor.author
Jeronimo, Gabriela Tali  
dc.contributor.author
Sombra, Martín  
dc.date.available
2023-10-02T15:09:03Z  
dc.date.issued
2022-03  
dc.identifier.citation
D'Andrea, Carlos; Jeronimo, Gabriela Tali; Sombra, Martín; The Canny–Emiris Conjecture for the Sparse Resultant; Springer; Foundations Of Computational Mathematics; 23; 3; 3-2022; 741-801  
dc.identifier.issn
1615-3375  
dc.identifier.uri
http://hdl.handle.net/11336/213781  
dc.description.abstract
We present a product formula for the initial parts of the sparse resultant associated with an arbitrary family of supports, generalizing a previous result by Sturmfels. This allows to compute the homogeneities and degrees of this sparse resultant, and its evaluation at systems of Laurent polynomials with smaller supports. We obtain an analogous product formula for some of the initial parts of the principal minors of the Sylvester-type square matrix associated with a mixed subdivision of a polytope. Applying these results, we prove that under suitable hypothesis, the sparse resultant can be computed as the quotient of the determinant of such a square matrix by one of its principal minors. This generalizes the classical Macaulay formula for the homogeneous resultant and confirms a conjecture of Canny and Emiris.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
INITIAL PART  
dc.subject
MACAULAY FORMULA  
dc.subject
MIXED SUBDIVISION  
dc.subject
SPARSE RESULTANT  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The Canny–Emiris Conjecture for the Sparse Resultant  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T22:44:57Z  
dc.journal.volume
23  
dc.journal.number
3  
dc.journal.pagination
741-801  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: D'Andrea, Carlos. Centre de Recerca Matemàtica; España. Universidad de Barcelona; España  
dc.description.fil
Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Sombra, Martín. Centre de Recerca Matemàtica; España. Institució Catalana de Recerca I Estudis Avançats; España. Universidad de Barcelona; España  
dc.journal.title
Foundations Of Computational Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10208-021-09547-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s10208-021-09547-3