Mostrar el registro sencillo del ítem
dc.contributor.author
D'Andrea, Carlos
dc.contributor.author
Jeronimo, Gabriela Tali
dc.contributor.author
Sombra, Martín
dc.date.available
2023-10-02T15:09:03Z
dc.date.issued
2022-03
dc.identifier.citation
D'Andrea, Carlos; Jeronimo, Gabriela Tali; Sombra, Martín; The Canny–Emiris Conjecture for the Sparse Resultant; Springer; Foundations Of Computational Mathematics; 23; 3; 3-2022; 741-801
dc.identifier.issn
1615-3375
dc.identifier.uri
http://hdl.handle.net/11336/213781
dc.description.abstract
We present a product formula for the initial parts of the sparse resultant associated with an arbitrary family of supports, generalizing a previous result by Sturmfels. This allows to compute the homogeneities and degrees of this sparse resultant, and its evaluation at systems of Laurent polynomials with smaller supports. We obtain an analogous product formula for some of the initial parts of the principal minors of the Sylvester-type square matrix associated with a mixed subdivision of a polytope. Applying these results, we prove that under suitable hypothesis, the sparse resultant can be computed as the quotient of the determinant of such a square matrix by one of its principal minors. This generalizes the classical Macaulay formula for the homogeneous resultant and confirms a conjecture of Canny and Emiris.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
INITIAL PART
dc.subject
MACAULAY FORMULA
dc.subject
MIXED SUBDIVISION
dc.subject
SPARSE RESULTANT
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The Canny–Emiris Conjecture for the Sparse Resultant
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T22:44:57Z
dc.journal.volume
23
dc.journal.number
3
dc.journal.pagination
741-801
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: D'Andrea, Carlos. Centre de Recerca Matemàtica; España. Universidad de Barcelona; España
dc.description.fil
Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Sombra, Martín. Centre de Recerca Matemàtica; España. Institució Catalana de Recerca I Estudis Avançats; España. Universidad de Barcelona; España
dc.journal.title
Foundations Of Computational Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10208-021-09547-3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s10208-021-09547-3
Archivos asociados