Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The Canny–Emiris Conjecture for the Sparse Resultant

D'Andrea, Carlos; Jeronimo, Gabriela TaliIcon ; Sombra, Martín
Fecha de publicación: 03/2022
Editorial: Springer
Revista: Foundations Of Computational Mathematics
ISSN: 1615-3375
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

We present a product formula for the initial parts of the sparse resultant associated with an arbitrary family of supports, generalizing a previous result by Sturmfels. This allows to compute the homogeneities and degrees of this sparse resultant, and its evaluation at systems of Laurent polynomials with smaller supports. We obtain an analogous product formula for some of the initial parts of the principal minors of the Sylvester-type square matrix associated with a mixed subdivision of a polytope. Applying these results, we prove that under suitable hypothesis, the sparse resultant can be computed as the quotient of the determinant of such a square matrix by one of its principal minors. This generalizes the classical Macaulay formula for the homogeneous resultant and confirms a conjecture of Canny and Emiris.
Palabras clave: INITIAL PART , MACAULAY FORMULA , MIXED SUBDIVISION , SPARSE RESULTANT
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.068Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/213781
URL: https://link.springer.com/article/10.1007/s10208-021-09547-3
DOI: https://doi.org/10.1007/s10208-021-09547-3
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
D'Andrea, Carlos; Jeronimo, Gabriela Tali; Sombra, Martín; The Canny–Emiris Conjecture for the Sparse Resultant; Springer; Foundations Of Computational Mathematics; 23; 3; 3-2022; 741-801
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES