Artículo
The Canny–Emiris Conjecture for the Sparse Resultant
Fecha de publicación:
03/2022
Editorial:
Springer
Revista:
Foundations Of Computational Mathematics
ISSN:
1615-3375
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present a product formula for the initial parts of the sparse resultant associated with an arbitrary family of supports, generalizing a previous result by Sturmfels. This allows to compute the homogeneities and degrees of this sparse resultant, and its evaluation at systems of Laurent polynomials with smaller supports. We obtain an analogous product formula for some of the initial parts of the principal minors of the Sylvester-type square matrix associated with a mixed subdivision of a polytope. Applying these results, we prove that under suitable hypothesis, the sparse resultant can be computed as the quotient of the determinant of such a square matrix by one of its principal minors. This generalizes the classical Macaulay formula for the homogeneous resultant and confirms a conjecture of Canny and Emiris.
Palabras clave:
INITIAL PART
,
MACAULAY FORMULA
,
MIXED SUBDIVISION
,
SPARSE RESULTANT
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
D'Andrea, Carlos; Jeronimo, Gabriela Tali; Sombra, Martín; The Canny–Emiris Conjecture for the Sparse Resultant; Springer; Foundations Of Computational Mathematics; 23; 3; 3-2022; 741-801
Compartir
Altmétricas