Mostrar el registro sencillo del ítem
dc.contributor.author
Álvarez, E.
dc.contributor.author
Spannowsky, M.
dc.contributor.author
Szewc, Manuel
dc.date.available
2023-09-28T18:23:29Z
dc.date.issued
2022-03
dc.identifier.citation
Álvarez, E.; Spannowsky, M.; Szewc, Manuel; Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-12
dc.identifier.uri
http://hdl.handle.net/11336/213499
dc.description.abstract
The classification of jets induced by quarks or gluons is important for New Physics searches at high-energy colliders. However, available taggers usually rely on modeling the data through Monte Carlo simulations, which could veil intractable theoretical and systematical uncertainties. To significantly reduce biases, we propose an unsupervised learning algorithm that, given a sample of jets, can learn the SoftDrop Poissonian rates for quark- and gluon-initiated jets and their fractions. We extract the Maximum Likelihood Estimates for the mixture parameters and the posterior probability over them. We then construct a quark-gluon tagger and estimate its accuracy in actual data to be in the 0.65–0.7 range, below supervised algorithms but nevertheless competitive. We also show how relevant unsupervised metrics perform well, allowing for an unsupervised hyperparameter selection. Further, we find that this result is not affected by an angular smearing introduced to simulate detector effects for central jets. The presented unsupervised learning algorithm is simple; its result is interpretable and depends on very few assumptions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Frontiers Media
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
INFERENCE
dc.subject
JETS
dc.subject
LHC
dc.subject
QCD
dc.subject
UNSUPERVISE LEARNING
dc.subject.classification
Física de Partículas y Campos
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-08-08T13:43:06Z
dc.identifier.eissn
2624-8212
dc.journal.volume
5
dc.journal.pagination
1-12
dc.journal.pais
Suiza
dc.journal.ciudad
Lausana
dc.description.fil
Fil: Álvarez, E.. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina
dc.description.fil
Fil: Spannowsky, M.. University of Durham; Reino Unido
dc.description.fil
Fil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina
dc.journal.title
Frontiers in Artificial Intelligence
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/frai.2022.852970/full
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/frai.2022.852970
Archivos asociados