Mostrar el registro sencillo del ítem

dc.contributor.author
Álvarez, E.  
dc.contributor.author
Spannowsky, M.  
dc.contributor.author
Szewc, Manuel  
dc.date.available
2023-09-28T18:23:29Z  
dc.date.issued
2022-03  
dc.identifier.citation
Álvarez, E.; Spannowsky, M.; Szewc, Manuel; Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-12  
dc.identifier.uri
http://hdl.handle.net/11336/213499  
dc.description.abstract
The classification of jets induced by quarks or gluons is important for New Physics searches at high-energy colliders. However, available taggers usually rely on modeling the data through Monte Carlo simulations, which could veil intractable theoretical and systematical uncertainties. To significantly reduce biases, we propose an unsupervised learning algorithm that, given a sample of jets, can learn the SoftDrop Poissonian rates for quark- and gluon-initiated jets and their fractions. We extract the Maximum Likelihood Estimates for the mixture parameters and the posterior probability over them. We then construct a quark-gluon tagger and estimate its accuracy in actual data to be in the 0.65–0.7 range, below supervised algorithms but nevertheless competitive. We also show how relevant unsupervised metrics perform well, allowing for an unsupervised hyperparameter selection. Further, we find that this result is not affected by an angular smearing introduced to simulate detector effects for central jets. The presented unsupervised learning algorithm is simple; its result is interpretable and depends on very few assumptions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Frontiers Media  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
INFERENCE  
dc.subject
JETS  
dc.subject
LHC  
dc.subject
QCD  
dc.subject
UNSUPERVISE LEARNING  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-08T13:43:06Z  
dc.identifier.eissn
2624-8212  
dc.journal.volume
5  
dc.journal.pagination
1-12  
dc.journal.pais
Suiza  
dc.journal.ciudad
Lausana  
dc.description.fil
Fil: Álvarez, E.. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina  
dc.description.fil
Fil: Spannowsky, M.. University of Durham; Reino Unido  
dc.description.fil
Fil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina  
dc.journal.title
Frontiers in Artificial Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/frai.2022.852970/full  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/frai.2022.852970