Artículo
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models
Fecha de publicación:
03/2022
Editorial:
Frontiers Media
Revista:
Frontiers in Artificial Intelligence
e-ISSN:
2624-8212
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The classification of jets induced by quarks or gluons is important for New Physics searches at high-energy colliders. However, available taggers usually rely on modeling the data through Monte Carlo simulations, which could veil intractable theoretical and systematical uncertainties. To significantly reduce biases, we propose an unsupervised learning algorithm that, given a sample of jets, can learn the SoftDrop Poissonian rates for quark- and gluon-initiated jets and their fractions. We extract the Maximum Likelihood Estimates for the mixture parameters and the posterior probability over them. We then construct a quark-gluon tagger and estimate its accuracy in actual data to be in the 0.65–0.7 range, below supervised algorithms but nevertheless competitive. We also show how relevant unsupervised metrics perform well, allowing for an unsupervised hyperparameter selection. Further, we find that this result is not affected by an angular smearing introduced to simulate detector effects for central jets. The presented unsupervised learning algorithm is simple; its result is interpretable and depends on very few assumptions.
Palabras clave:
INFERENCE
,
JETS
,
LHC
,
QCD
,
UNSUPERVISE LEARNING
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (ICIFI)
Articulos de INSTITUTO DE CIENCIAS FISICAS
Articulos de INSTITUTO DE CIENCIAS FISICAS
Citación
Álvarez, E.; Spannowsky, M.; Szewc, Manuel; Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-12
Compartir
Altmétricas