Mostrar el registro sencillo del ítem

dc.contributor.author
Cortiñas, Guillermo Horacio  
dc.date.available
2023-09-27T18:27:56Z  
dc.date.issued
2022-08  
dc.identifier.citation
Cortiñas, Guillermo Horacio; Classifying Leavitt path algebras up to involution preserving homotopy; Springer; Mathematische Annalen; 386; 3-4; 8-2022; 2107-2157  
dc.identifier.issn
0025-5831  
dc.identifier.uri
http://hdl.handle.net/11336/213327  
dc.description.abstract
We prove that the Bowen–Franks group classifies the Leavitt path algebras of purely infinite simple finite graphs over a regular supercoherent commutative ring with involution where 2 is invertible, equipped with their standard involutions, up to matricial stabilization and involution preserving homotopy equivalence. We also consider a twisting of the standard involution on Leavitt path algebras and obtain partial results in the same direction for purely infinite simple graphs. Our tools are K-theoretic, and we prove several results about (Hermitian, bivariant) K-theory of Leavitt path algebras, such as Poincaré duality, which are of independent interest.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Leavitt pathj algebras  
dc.subject
Algebras with involution  
dc.subject
Bivariant hermitian K-theory  
dc.subject
Bowen-Franks groups  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Classifying Leavitt path algebras up to involution preserving homotopy  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T22:45:35Z  
dc.journal.volume
386  
dc.journal.number
3-4  
dc.journal.pagination
2107-2157  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Mathematische Annalen  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-022-02436-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00208-022-02436-2