Mostrar el registro sencillo del ítem
dc.contributor.author
Cortiñas, Guillermo Horacio
dc.date.available
2023-09-27T18:27:56Z
dc.date.issued
2022-08
dc.identifier.citation
Cortiñas, Guillermo Horacio; Classifying Leavitt path algebras up to involution preserving homotopy; Springer; Mathematische Annalen; 386; 3-4; 8-2022; 2107-2157
dc.identifier.issn
0025-5831
dc.identifier.uri
http://hdl.handle.net/11336/213327
dc.description.abstract
We prove that the Bowen–Franks group classifies the Leavitt path algebras of purely infinite simple finite graphs over a regular supercoherent commutative ring with involution where 2 is invertible, equipped with their standard involutions, up to matricial stabilization and involution preserving homotopy equivalence. We also consider a twisting of the standard involution on Leavitt path algebras and obtain partial results in the same direction for purely infinite simple graphs. Our tools are K-theoretic, and we prove several results about (Hermitian, bivariant) K-theory of Leavitt path algebras, such as Poincaré duality, which are of independent interest.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Leavitt pathj algebras
dc.subject
Algebras with involution
dc.subject
Bivariant hermitian K-theory
dc.subject
Bowen-Franks groups
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Classifying Leavitt path algebras up to involution preserving homotopy
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T22:45:35Z
dc.journal.volume
386
dc.journal.number
3-4
dc.journal.pagination
2107-2157
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Mathematische Annalen
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-022-02436-2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00208-022-02436-2
Archivos asociados