Artículo
Classifying Leavitt path algebras up to involution preserving homotopy
Fecha de publicación:
08/2022
Editorial:
Springer
Revista:
Mathematische Annalen
ISSN:
0025-5831
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove that the Bowen–Franks group classifies the Leavitt path algebras of purely infinite simple finite graphs over a regular supercoherent commutative ring with involution where 2 is invertible, equipped with their standard involutions, up to matricial stabilization and involution preserving homotopy equivalence. We also consider a twisting of the standard involution on Leavitt path algebras and obtain partial results in the same direction for purely infinite simple graphs. Our tools are K-theoretic, and we prove several results about (Hermitian, bivariant) K-theory of Leavitt path algebras, such as Poincaré duality, which are of independent interest.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortiñas, Guillermo Horacio; Classifying Leavitt path algebras up to involution preserving homotopy; Springer; Mathematische Annalen; 386; 3-4; 8-2022; 2107-2157
Compartir
Altmétricas