Mostrar el registro sencillo del ítem

dc.contributor.author
Cavasotto, Claudio Norberto  
dc.contributor.author
Scardino, Valeria  
dc.date.available
2023-09-27T10:07:21Z  
dc.date.issued
2022-12  
dc.identifier.citation
Cavasotto, Claudio Norberto; Scardino, Valeria; Machine Learning Toxicity Prediction: Latest Advances by Toxicity End Point; American Chemical Society; ACS Omega; 7; 51; 12-2022; 47536-47546  
dc.identifier.issn
2470-1343  
dc.identifier.uri
http://hdl.handle.net/11336/213156  
dc.description.abstract
Machine learning (ML) models to predict the toxicity of small molecules have garnered great attention and have become widely used in recent years. Computational toxicity prediction is particularly advantageous in the early stages of drug discovery in order to filter out molecules with high probability of failing in clinical trials. This has been helped by the increase in the number of large toxicology databases available. However, being an area of recent application, a greater understanding of the scope and applicability of ML methods is still necessary. There are various kinds of toxic end points that have been predicted in silico. Acute oral toxicity, hepatotoxicity, cardiotoxicity, mutagenicity, and the 12 Tox21 data end points are among the most commonly investigated. Machine learning methods exhibit different performances on different data sets due to dissimilar complexity, class distributions, or chemical space covered, which makes it hard to compare the performance of algorithms over different toxic end points. The general pipeline to predict toxicity using ML has already been analyzed in various reviews. In this contribution, we focus on the recent progress in the area and the outstanding challenges, making a detailed description of the state-of-the-art models implemented for each toxic end point. The type of molecular representation, the algorithm, and the evaluation metric used in each research work are explained and analyzed. A detailed description of end points that are usually predicted, their clinical relevance, the available databases, and the challenges they bring to the field are also highlighted.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Toxicology  
dc.subject
Machine Learning  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Machine Learning Toxicity Prediction: Latest Advances by Toxicity End Point  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T18:15:42Z  
dc.identifier.eissn
2470-1343  
dc.journal.volume
7  
dc.journal.number
51  
dc.journal.pagination
47536-47546  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina  
dc.description.fil
Fil: Scardino, Valeria. Universidad Austral; Argentina  
dc.journal.title
ACS Omega  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsomega.2c05693  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsomega.2c05693