Mostrar el registro sencillo del ítem

dc.contributor.author
Alvarez, Ezequiel  
dc.contributor.author
Dillon, Barry M.  
dc.contributor.author
Faroughy, Darius A.  
dc.contributor.author
Kamenik, Jernej F.  
dc.contributor.author
Lamagna, Federico Agustín  
dc.contributor.author
Szewc, Manuel  
dc.date.available
2023-09-25T15:09:44Z  
dc.date.issued
2022-05  
dc.identifier.citation
Alvarez, Ezequiel; Dillon, Barry M.; Faroughy, Darius A.; Kamenik, Jernej F.; Lamagna, Federico Agustín; et al.; Bayesian probabilistic modeling for four-top production at the LHC; American Physical Society; Physical Review D; 105; 9; 5-2022; 1-11  
dc.identifier.issn
0556-2821  
dc.identifier.uri
http://hdl.handle.net/11336/212924  
dc.description.abstract
Monte Carlo (MC) generators are crucial for analyzing data in particle collider experiments. However, often even a small mismatch between the MC simulations and the measurements can undermine the interpretation of the results. This is particularly important in the context of LHC searches for rare physics processes within and beyond the standard model (SM). One of the ultimate rare processes in the SM currently being explored at the LHC, pp→tt¯tt¯ with its large multidimensional phase-space is an ideal testing ground to explore new ways to reduce the impact of potential MC mismodeling on experimental results. We propose a novel statistical method capable of disentangling the 4-top signal from the dominant backgrounds in the same-sign dilepton channel, while simultaneously correcting for possible MC imperfections in modeling of the most relevant discriminating observables - the jet multiplicity distributions. A Bayesian mixture of multinomials is used to model the light-jet and b-jet multiplicities under the assumption of their conditional independence. The signal and background distributions generated from a deliberately mistuned MC simulator are used as model priors. The posterior distributions, as well as the signal and background fractions, are then learned from the data using Bayesian inference. We demonstrate that our method can mitigate the effects of large MC mismodelings in the context of a realistic tt¯tt¯ search, leading to corrected posterior distributions that better approximate the underlying truth-level spectra.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
lhc  
dc.subject
top  
dc.subject
bayesian inference  
dc.subject
Nj and Nb  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Bayesian probabilistic modeling for four-top production at the LHC  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-08T13:48:14Z  
dc.identifier.eissn
2470-0029  
dc.journal.volume
105  
dc.journal.number
9  
dc.journal.pagination
1-11  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Oak Ridge  
dc.description.fil
Fil: Alvarez, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina  
dc.description.fil
Fil: Dillon, Barry M.. Ruprecht Karls Universitat Heidelberg; Alemania  
dc.description.fil
Fil: Faroughy, Darius A.. Universitat Zurich; Suiza  
dc.description.fil
Fil: Kamenik, Jernej F.. Universitat Zurich; Suiza  
dc.description.fil
Fil: Lamagna, Federico Agustín. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina  
dc.journal.title
Physical Review D  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevD.105.092001  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.092001