Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Bayesian probabilistic modeling for four-top production at the LHC

Alvarez, EzequielIcon ; Dillon, Barry M.; Faroughy, Darius A.; Kamenik, Jernej F.; Lamagna, Federico AgustínIcon ; Szewc, ManuelIcon
Fecha de publicación: 05/2022
Editorial: American Physical Society
Revista: Physical Review D
ISSN: 0556-2821
e-ISSN: 2470-0029
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de Partículas y Campos

Resumen

Monte Carlo (MC) generators are crucial for analyzing data in particle collider experiments. However, often even a small mismatch between the MC simulations and the measurements can undermine the interpretation of the results. This is particularly important in the context of LHC searches for rare physics processes within and beyond the standard model (SM). One of the ultimate rare processes in the SM currently being explored at the LHC, pp→tt¯tt¯ with its large multidimensional phase-space is an ideal testing ground to explore new ways to reduce the impact of potential MC mismodeling on experimental results. We propose a novel statistical method capable of disentangling the 4-top signal from the dominant backgrounds in the same-sign dilepton channel, while simultaneously correcting for possible MC imperfections in modeling of the most relevant discriminating observables - the jet multiplicity distributions. A Bayesian mixture of multinomials is used to model the light-jet and b-jet multiplicities under the assumption of their conditional independence. The signal and background distributions generated from a deliberately mistuned MC simulator are used as model priors. The posterior distributions, as well as the signal and background fractions, are then learned from the data using Bayesian inference. We demonstrate that our method can mitigate the effects of large MC mismodelings in the context of a realistic tt¯tt¯ search, leading to corrected posterior distributions that better approximate the underlying truth-level spectra.
Palabras clave: lhc , top , bayesian inference , Nj and Nb
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 838.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/212924
DOI: http://dx.doi.org/10.1103/PhysRevD.105.092001
URL: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.092001
Colecciones
Articulos (ICIFI)
Articulos de INSTITUTO DE CIENCIAS FISICAS
Citación
Alvarez, Ezequiel; Dillon, Barry M.; Faroughy, Darius A.; Kamenik, Jernej F.; Lamagna, Federico Agustín; et al.; Bayesian probabilistic modeling for four-top production at the LHC; American Physical Society; Physical Review D; 105; 9; 5-2022; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES