Mostrar el registro sencillo del ítem

dc.contributor.author
Bom, C. R.  
dc.contributor.author
Fraga, B. M. O.  
dc.contributor.author
Dias, L. O.  
dc.contributor.author
Schubert, P.  
dc.contributor.author
Blanco Valentin, M.  
dc.contributor.author
Furlanetto, C.  
dc.contributor.author
Makler, Martín  
dc.contributor.author
Teles, K.  
dc.contributor.author
Portes De Albuquerque, M.  
dc.contributor.author
Metcalf, Benton  
dc.date.available
2023-09-22T17:08:46Z  
dc.date.issued
2022-10  
dc.identifier.citation
Bom, C. R.; Fraga, B. M. O.; Dias, L. O.; Schubert, P.; Blanco Valentin, M.; et al.; Developing a victorious strategy to the second strong gravitational lensing data challenge; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 515; 4; 10-2022; 5121-5134  
dc.identifier.issn
0035-8711  
dc.identifier.uri
http://hdl.handle.net/11336/212761  
dc.description.abstract
Strong lensing is a powerful probe of the matter distribution in galaxies and clusters and a relevant tool for cosmography. Analyses of strong gravitational lenses with deep learning have become a popular approach due to these astronomical objects' rarity and image complexity. Next-generation surveys will provide more opportunities to derive science from these objects and an increasing data volume to be analysed. However, finding strong lenses is challenging, as their number densities are orders of magnitude below those of galaxies. Therefore, specific strong lensing search algorithms are required to discover the highest number of systems possible with high purity and low false alarm rate. The need for better algorithms has prompted the development of an open community data science competition named strong gravitational lensing challenge (SGLC). This work presents the deep learning strategies and methodology used to design the highest scoring algorithm in the second SGLC (II SGLC). We discuss the approach used for this data set, the choice of a suitable architecture, particularly the use of a network with two branches to work with images in different resolutions, and its optimization. We also discuss the detectability limit, the lessons learned, and prospects for defining a tailor-made architecture in a survey in contrast to a general one. Finally, we release the models and discuss the best choice to easily adapt the model to a data set representing a survey with a different instrument. This work helps to take a step towards efficient, adaptable, and accurate analyses of strong lenses with deep learning frameworks.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GRAVITATIONAL LENSING: STRONG  
dc.subject
METHODS: NUMERICAL  
dc.subject
TECHNIQUES: IMAGE PROCESSING  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Developing a victorious strategy to the second strong gravitational lensing data challenge  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-08T13:44:02Z  
dc.journal.volume
515  
dc.journal.number
4  
dc.journal.pagination
5121-5134  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Bom, C. R.. Centro Brasileiro de Pesquisas Físicas; Brasil. Centro Federal de Educação Tecnológica Celso Suckow da Fonseca; Brasil  
dc.description.fil
Fil: Fraga, B. M. O.. Centro Brasileiro de Pesquisas Físicas; Brasil  
dc.description.fil
Fil: Dias, L. O.. Centro Brasileiro de Pesquisas Físicas; Brasil  
dc.description.fil
Fil: Schubert, P.. Centro Brasileiro de Pesquisas Físicas; Brasil  
dc.description.fil
Fil: Blanco Valentin, M.. Centro Brasileiro de Pesquisas Físicas; Brasil  
dc.description.fil
Fil: Furlanetto, C.. Universidade Federal do Rio Grande do Sul; Brasil  
dc.description.fil
Fil: Makler, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Centro Brasileiro de Pesquisas Físicas; Brasil  
dc.description.fil
Fil: Teles, K.. Centro Brasileiro de Pesquisas Físicas; Brasil  
dc.description.fil
Fil: Portes De Albuquerque, M.. Centro Brasileiro de Pesquisas Físicas; Brasil  
dc.description.fil
Fil: Metcalf, Benton. Istituto Nazionale di Astrofisica; Italia. Università di Bologna; Italia  
dc.journal.title
Monthly Notices of the Royal Astronomical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/515/4/5121/6648839  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/mnras/stac2047